1. In the context of query optimization, what is an SQL query block?

It is a minimal query, with no more than one SELECT, FROM, and WHERE clause.
2. Define the term reduction factor.
How much smaller a query or operator result is compared to the input.
3. Define an index-only plan.
A query plan that can get all the information it needs from the leaf pages of the index, without having to look at the actual data pages.
4. Consider a relation with the schema:

Employees(eid: integer, ename: string, sal: integer, title: string, age:integer)

Each Employee tuple is 100 bytes long. In an index, each data entry is 20 bytes long. The entire relation is 10,000 pages. You have the following indexes, all using alternative 2:

· Hash index on eid

· B+ tree index on sal

· Hash index on age,

· Clustered B+ tree index on <age, sal>

For each of the following selection conditions, find the best access path for retrieving all matching Employee tuples, and state its I/0 cost. For the purposes of the exercise, assume that the reduction factor of each “>” clause is 0.1 (even though that is not consistent from condition to condition).
· Sal > 100

Assume page is 1024 bytes, 10 employees/page, 100,000 employees total.
File Scan would be 10,000 I/Os.

Unclustered B tree on Sal would be cost of tree (2-3 I/Os) plus # of matching tuples, which is 10,000.

· Age = 25

Use hash index on age (1.2 I/Os on average) to find matching tuple IDs, then 1 I/O per matching tuple, for 10,000 I/Os.
Use clustered B-tree on age/sal, cost of tree (2-3 I/Os) plus # matching pages, which is 1,000.
· Age > 20

Use clustered B-tree on age/sal, cost same as above.
· Eid = 1000

Use hash index on EID, cost of hash function (avg 1.2 I/Os), plus cost to retrieve tuple, 1 I/O.
· Sal > 200 and age > 30

Use clustered B-tree on age, then filter matching tuples on the fly for salary. Cost is same as using B-trees above.
