Debugging PostgreSQL

CS186 Staff

Source Browsing with Cscope

« Cscope is a developer's tool for browsing source code
— hitp://cscope.sourceforge.net/ for all the gory details

— Command line mode

* |In your top level postgres-8.0.3 directory simply run
cscope -R

» This will open a self-explanatory menu of the cscope commands

tcondie@clash:~/ net — cscope — 84x30
C symbol: StrategyGetBuffer 5
File Function Line

ﬂ buf_internals.h <global> 134 extern BufferDesc *StrategyGetBuffer (int
*cdb_replace index);

1 buf_internals.h <global> 134 extern BufferDesc *StrategyGetBuffer (int
*ecdh_replace index);

2 bufmgr.c Bufferalloc 32 buf = StrategyGetBuffer (fcdb_replace index);

. StrategyGetBuffer 366 StrategyGetBuffer (int *cdb replace index)

3 freelist.
4 StrategyGetBuffer 366 StrategyGetBuffer (int *cdb replace index)

freelist.

0o

Find this ¢ symbol:

Find this global definition:

Find functions called by this function:
Find functions calling this function:
Find this text string:

Change this text string:

Find this egq pattern:

Find this file:

Find files #including this file:

Cscope with Emacs

* Building cscope index (for use with vi or emacs):
— cscope -DbR
 Build your cscope.out index in the top level directory
— This generates a cscope.out file

— Rerun when new files/functions are added

« .emacs configuration:

(setg cscope-do-not-update-database t)

(load-file "<path>/xcscope.el")

(require 'xcscope)

xcscope.el available at:
www-inst.eecs.berkeley.edu/~cs186/xcscope.el

« Emacs will search for cscope.out by looking in the file’s
directory, then its parent directory, etc...
* Thus, a single cscope.out at top-level source directory suffices

Cscope Keybindings (Emacs)

» All keybindings use the "C-c s" prefix

— C-css
— C-csd
— C-csg
— CcsG
— Ccsc
— CcsC

— C-cst
— Ccse
— C-csf
— C-cs/l

Find symbol.

Find global definition.

Find global definition (alternate binding).
Find global definition without prompting.
Find functions calling a function.

Find called functions

(list functions called from a function)
Find text string.

Find egrep pattern.

Find a file.

Find files #including a file.

Setup

* Modify postgres-8.0.3/src/Makefile.global
— Remove flag *-0O2’ from CFLAGS variable

« Use postmaster to setup your test database

« Data generation and sample queries can be
found in ~cs186/gendata

— Use .c file to generate massive amounts of rows
(stress test your buffer manager)

— Use posgres backend executable to debug your
queries

Setup

® 0O e tcondie@clash:~/phi/phi/net — bash — 104x26
clash-ph:~/Workspace/C5186/help session/example tcondied [

[

Debugging
gdb: the Gnu DeBugger

Debugs C, C++, and Modula-2
Text and graphical interfaces

Program crashes

— Leaves a “core” file
* Memory dump of the program

— Run gdb on binary and core, explore state of program at crash
In PostgreSQL you need to specify debug options in the
configuration file

— configure --enable-debug --enable-cassert

— We have done this for you

GDB, the GNU DeBugger

Text-based, invoked with:
gdb [<programfile> [<corefile>|<pid>]]

Argument descriptions:

<programfile > executable program file

<corefile> core dump of program

<pid> process id of already running program
Example:

gdb ./hello

Compile <programfile> with —g for debug info

Basic GDB Commands

General Commands:

file [<file>] selects <file> as the program to debug

run [<args>] runs selected program with arguments <args>
attach <pid> attach gdb to a running process <pid>

kill kills the process being debugged

quit quits the gdb program

help [<topic>] accesses the internal help documentation
shell [<stmt>] execute statement in your shell

Stepping and Continuing:

cl[ontinue] continue execution (after a stop)
s[tep] step one line, entering called functions
nlext] step one line, without entering functions

finish finish the function and print the return value

GDB PostgreSQL

X emacs@clash-pb.gateway.2wire.net

File Edit Options Buffers Tools Gud Complete InfOut signals Help

DO pr & %00HDF S gD

Current directory is /Users/tcondie/Workspace/CS186/pgsql/bin/

GNU gdb 6. 1-20040303 {Apple wersion gdb-384) (Mon Mar 21 00:05:26 GMT Z005)

Copyright 2004 Free Software Foundation, Inc.

GDE 1s free software, covered by the GNU General Public License, and you are

welcome to change 1t and/or distribute copies of 1t wnder certain conditions.

Type "show copying" to see the conditions.

There 15 absolutely no warranty for GDE. Type "show warranty" for details.

This GDE was confiqured as "powerpc-apple-darwin". . Reading symbols for shared librare
Sies done

igdh) b StrategyBufferLookup

Breakpoint 1 at Oxlfaedd: file freelist. c, line 254,
igdh) break StrateqyGetBuffer

Ereakpoint 2 at Oxlfbadl: file freelist.c, line 367,
igdh) b StrategyReplaceBuffer

Breakpoint 3 at Ox1fcl00: file freelist. c, line 501,
(gdh) shell ps

PID TT STAT TIME COMMAND
12097 pl S 0:00.10 -hash
12132 pl R 0:03.81 emacs
12151 pl S+ 0:00.25 postgres test
12144 p2 Ss+ 0:00.38 fusc/libexec/gdb/gdb-powerpc-apple-darwin --annotate=

{gdh) attach 12151
:** *qad-postgres* All L22 {Debugger : rum)-------——--——-————— -~ 1

[]IIB—K 1

GDB Breakpoints

Useful breakpoint commands:

b[reak] [<where>] sets breakpoints. <where> can be
a number of things, including a hex
address, a function name, a line
number, or a relative line offset

[r]watch <expr> sets a watchpoint, which will break
when <expr> is written to [or read]
catch <event> breaks on <event>, which can be

used to catch many events, including
the throwing and catching of C++

exceptions
info break[points] prints out a listing of all breakpoints
clear [<where>] clears a breakpoint at <where>
d[elete] [<nums>] deletes breakpoints by number
cond[ition] <bp> remove a condition to a given breakpoint

cond[ition] <bp> <expr> Add a condition to a given breakpoint

Playing with Data in GDB

« Commands for looking around:

list [<where>] prints out source code at <where>
search <regexp> searches source code for <regexp>
backtrace [<n>] prints a backtrace <n> levels deep
info [<what>] prints out info on <what> (like

local variables or function args)
pl[rint] [<expr>] prints out the evaluation of <expr>

« Commands for altering data and control path:

set <name> <expr> sets variables or arguments
return [<expr>] returns <expr> from current function
jump <where> jumps execution to <where>

call <expr> Call a function within debugger

The Basics

* Breakpoint and basic navigation commands
will cover most needs

— A breakpoint halts the execution at the specified
routing or file location

— The primary navigation commands are next and
step

— The finish and continue commands are also
very useful

* The backtrace will print out your call stack

The Basics

e0e . emacs@clash-pb.gateway.2wire.net
File Edit Options Buffers Tools Gud Complete In/Out Signals Help

OO p & %00 Moo &8

Current directory is /Users/tcondie/Works 3 ;i This buffer is for notes you don't want to save, and for Li?
GNU gdb 6. 1-20040303 {(Apple wersion gdb-33 ;i If wou want to create a file, wisit that file with C-x C-f,
Copyright 2004 Free Software Foundation, 3 ;i then enter the text in that file's own buffer.

GDE is free software, covered by the GNU 3

welcome to change it and/for distribute cod 1

Type "show copyilng" to see the conditions 3
There is absolutely no warranty for GDE. 3
This GDE was configured as “"powerpc-apple 3

igdb) b StrateqgyGetBuffer

EBreakpoint 1 at Oxlfbadl: file freelist.c3
igdb) b StrategyBufferLoolap

EBreakpoint 2 at Oxlfaedd: file freelist.c3
igdb) b StrategyReplaceBuffer

Breakpoint 3 at O0x1fcl00: file freelist.c3
igdb) shell ps

PID TT STAT TIME COMMAND
12097 pl s 0:00.33 -bash
23619 pl s 0:03.18 emacs
23633 pl S+ 0:00. 28 postgres test

23624 pZ Ss+ 0:00.39 fasrflibexec/gd3
(gdb) attach 23633

- ek L CRUVRUDE. [N S ——— 277 w Min L . O R | . y—— g 277 v ¥ C - T p——— . — }

Breakpoint Conditions

* You can attach conditions (or predicates) to
breakpoints

— The execution will halt when the condition
becomes true

— Be careful when placing conditions on pointers!
* You may accidentally dereference a NULL pointer

Breakpoint Condltlons

tcondie@clash:~/phi/phi/net — bash — 96x19
lash-pb:~/Workspace/CS3186 tcondied D 5
+
L r.
[
--:-- *scratch* a1l LS (Lisp Interaction)-——————-——————-—- oo e ooy

[]

Watchpoints

« A watchpoint is like an unbounded condition on
some variable

— The execution halts when the condition on the watch
variable becomes true

— If the variable goes out of scope then the watch point is
automatically deleted!
« E.g., watch on a variable local to a function is deleted when
the function returns
— As with breakpoints, take care when ‘watching’ pointer
variables

Watchpoints

X emacs@clash-pb.gateway.2wire.net

806

File Edit Options Buffers Tools Gud Complete In/Out Signals Help

DO r & F 00T GO & a0

PID TT STAT TIME COMMAND
12097 pl S 0:00.38 -bash
23659 pl S8 0:06.33 emacs
23681 pl S+ 0:00. 25 postgres -B 16 test
23661 pZ2 Ss+ 0:00.91 fusrc/libexec/gdbh/gdb-powerpc-apple-darwin --annotate=
(gdb) attach 23681

attaching to program: ° /Users/tcondie/Workspace/CS186/pgsql/bin/postgres', process 23681,

090013724

in read ()

(gdb) info b

HNum Type

1 hbreakpoint
breakpoint already hit 1 time
2 hreakpoint

Disp Enb Address
0x001faedd in StrategyBufferLookup at freelist c:254

ke
ke

Ep n

p ¥

What
+

0x001fc100 in StrategyReplaceBuffer at freelist. c:501

stop only if cdb_found index := O
breakpoint already hit 2 times

{gdb)

oL

[=) JNSES, RN | Y. P - ——

mMae. T

** *md-postgres* Bot L73
Dump of assembler code for function read:
02900137Ta0 <read+0:: 11 cl, 3
B 0x000137ad[|<read+d > sC
0900137Ta8 <read+8:: a] 0x900137b0 <read+16:
090013Tac <read+12:: blc
02900137h0 <read+l6:: mflr ol
0900137hd <read+20:: hecl- 20, 4*crT+s0, 0x900137hE <read+24:>
0900137ThE <read+24:: mflr rl2
02900137The <read+28:: mtlr ol
02900137cO <read+32:: addis rl2, rl12, 4095
0900137Tcd <read+363>: lwz rl2, 10448 (rl12)
02900137c8 <read+40:: mtctr rl2
0290013Tce <read+dd:: hotr
0x8900137d0 <read+48:: .long 0x0
0x900137dd <read+5Z:: . Long 00
090013748 <read+56:: . Long 00
0x900137de <read+60:: .long O0x0

LY g F e ¥

More and More GDB

* For the most complete and up-to-date
documentation on GDB, use the GDB help

subsystem from within gab. A close second
is the GDB info node (info gdb).

* There is also an emacs interface to GDB,
which allows you to keep the source code
open in a separate frame while debugging
(documentation for how to use this is
available in the GDB info node)

Profiling

* “90% exec time spent in 10% of the code”

* Popular tools for profiling:
— gprof

 Flat profile: time spent in functions and how often called
» Call graph: Which functions called which and how often
» Annotated source: source w/ #times each line executed
— gcov
» Test coverage
— SimpleScalar
* Program performance analysis
« Mirco-arch modeling
» Hardware-software co-verification

Profiling: gprof
We recommend using gprof
— Others not really important for your purposes
Use gcc/g++ options: -pg
— Add to configure file with the --enable-debug flag
Run the binary (e.g., postgres) as normal, outputs gmon.out

Run gprof to analyze

gprof <binary> <path>/gmon.out

— binary The binary file (e.g., postgres)

— gmon.out dynamic call graph and profile (produced by execution).
— See man page for further details

tcondie@clash:~/phi/phi/net — vim — 79x20

called/total parents =
inde Ftime zself descendentz called+tself name index
Halled/total children
0.oo0 0.o0 5429/5429 _ReadBufferInternal [65]
[68] 0.0 0.00 0.00 5429 _StrategyBufferLookup [68]
0.00 0.00 5429/5429 _BufTableLookup [64]
0.00 0.00 126/126 _ReadBufferInternal [63]
[201] 0.0 0.oo0 0.oo 126 _StrategyGetBuffer [201]
0.00 0.00 126/126 _ReadBufferInternal [63]
[202] 0.0 0.oo0 0.00 126 _StrategyReplaceBuffer [20Z]
0.00 0.00 126/126 _BufTableInsert [198]

