
CS 188
Spring 2012

Introduction to
Artificial Intelligence Final

• You have approximately 3 hours.

• The exam is closed book, closed notes except a one-page crib sheet.

• Please use non-programmable calculators only.

• Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a
brief explanation. All short answer sections can be successfully answered in a few sentences AT MOST.

First name

Last name

SID

Login

First and last name of student to your left

First and last name of student to your right

For staff use only:

Q1. All Topics: Short Questions /88
Q2. Variable Elimination Ordering /28
Q3. Bidirectional A* Search /14
Q4. 3-Player Games /8
Q5. Learning a Bayes’ Net Structure /12

Total /150

1

THIS PAGE IS INTENTIONALLY LEFT BLANK

Q1. [88 pts] All Topics: Short Questions
Each True/False question is worth 2 points. Leaving a question blank is worth 0 points. Answering incorrectly
is worth −2 points.

For the questions that are not True/False, justify your answer concisely.

(a) Search.

S	

A	

B	

C	

D
G

1

2

2
2

1

1

5

5

Answer the following questions about the search problem shown above. S is the start-state, G is the (only)
goal-state. Break any ties alphabetically. For the questions that ask for a path, please give your answers in the
form ‘S −A−D −G.’

(i) [1 pt] What path would breadth-first graph search return for this search problem?

(ii) [1 pt] What path would uniform cost graph search return for this search problem?

(iii) [1 pt] What path would depth-first graph search return for this search problem?

(iv) [1 pt] What path would A* graph search, using a consistent heuristic, return for this search problem?

(b) CSPs.

(i) [4 pts] CSP Formulation.

PacStudent (S), PacBaby (B), PacMom (M), PacDad (D), GrandPac (P), and a friendly Ghost (G) are
lining up next to each other. The positions are numbered 1, 2, 3, 4, 5, 6, where 1 neighbors 2, 2 neighbors
1 and 3, 3 neighbors 2 and 4, 4 neighbors 3 and 5, 5 neighbors 4 and 6, and 6 neighbors 5. Each one of
them takes up exactly one spot. PacBaby (B) needs to be next to PacMom (M) one one side and PacDad
(D) on the other side. GrandPac (P) needs to be next to the Ghost (G). PacStudent (S) needs to be at
1 or 2. Formulate this problem as a CSP: list the variables, their domains, and the constraints. Encode
unary constraints as a constraint rather than pruning the domain. (No need to solve the problem, just
provide variables, domains and implicit constraints.)

• Variables:

• Domains:

• Constraints:

3

(ii) [2 pts] Consider a CSP with variables X,Y with domains {1, 2, 3, 4, 5, 6} for X and {2, 4, 6} for Y , and
constraints X < Y and X + Y > 8. List the values that will remain in the domain of X after enforcing
arc consistency for the arc X → Y (recall arc consistency for a specific arc only prunes the domain of the
tail variable, in this case X).

(c) [2 pts] α− β Pruning.

Consider the game tree shown below. For what range of U will the indicated pruning take place?

5 U 2
x?

4

(d) [16 pts] Probability and Decision Networks.

A	

S	

U	

T	
 A	
 P(A)	

e	
 0.5	

l	
 0.5	

A	
 T	
 U(A,T)	

e	
 e	
 600	

e	
 l	
 0	

l	
 e	
 300	

l	
 l	
 600	

A	
 S	
 P(S|A)	

e	
 e	
 0.8	

e	
 l	
 0.2	

l	
 e	
 0.4	

l	
 l	
 0.6	

S	
 P(S)	

e	

l	

S	
 A	
 P(A|S)	

e	
 e	

e	
 l	

l	
 e	

l	
 l	

Your parents are visiting you for graduation. You are in charge of picking them up at the airport. Their arrival
time (A) might be early (e) or late (l). You decide on a time (T) to go to the airport, also either early (e) or
late (l). Your sister (S) is a noisy source of information about their arrival time. The probability values and
utilities are shown in the tables above.

Compute P (S), P (A|S) and compute the quantities below.

EU(T = e) =

EU(T = l) =

MEU({}) =

Optimal action with no observations is T =

Now we consider the case where you decide to ask your sister for input.

EU(T = e|S = e) =

EU(T = l|S = e) =

MEU({S = e}) =

Optimal action with observation {S = e} is T =

EU(T = e|S = l) =

EU(T = l|S = l) =

MEU({S = l}) =

Optimal action with observation S = l is T =

V PI(S) =

5

(e) MDPs.

(i) [2 pts] [true or false] If the only difference between two MDPs is the value of the discount factor then
they must have the same optimal policy.

(ii) [2 pts] [true or false] When using features to represent the Q-function it is guaranteed that this feature-
based Q-learning finds the same Q-function, Q∗, as would be found when using a tabular representation
for the Q-function.

(iii) [2 pts] [true or false] For an infinite horizon MDP with a finite number of states and actions and with a
discount factor γ, with 0 < γ < 1, value iteration is guaranteed to converge.

(iv) [2 pts] [true or false] When getting to act only for a finite number of steps in an MDP, the optimal policy
is stationary. (A stationary policy is a policy that takes the same action in a given state, independent of
at what time the agent is in that state.)

(f) [3 pts] Bayes’ Nets: Representation Consider the joint distribution P (A,B,C,D) defined by the Bayes’
net below.

A	

B	

C	
 D

B	
 C	
 P(C|B)	

+b	
 +c	
 0.8	

+b	
 -­‐c	
 0.2	

-­‐b	
 +c	
 0.5	

-­‐b	
 -­‐c	
 0.5	

B	
 D	
 P(D|B)	

+b	
 +d	
 0.7	

+b	
 -­‐d	
 0.3	

-­‐b	
 +d	
 0.1	

-­‐b	
 -­‐d	
 0.9	

A	
 B	
 P(B|A)	

+a	
 +b	
 0.8	

+a	
 -­‐b	
 0.2	

-­‐a	
 +b	
 0.5	

-­‐a	
 -­‐b	
 0.5	

A	
 P(A)	

+a	
 0.8	

-­‐a	
 0.2	

Compute the following quantities:

P (A = +a) =

P (A = +a,B = −b, C = −c,D = +d) =

P (A = +a|B = −b, C = −c,D = +d) =

6

(g) [8 pts] Bayes’ Nets: Conditional Independence

Based only on the structure of the (new) Bayes’ Net given below, circle whether the following conditional
independence assertions are guaranteed to be true, guaranteed to be false, or cannot be determined by the
structure alone.Note: The ordering of the three answer columns might have been switched relative to previous
exams!

1 A ⊥⊥ C Guaranteed false Cannot be determined Guaranteed true

2 A ⊥⊥ C | E Guaranteed false Cannot be determined Guaranteed true

3 A ⊥⊥ C | G Guaranteed false Cannot be determined Guaranteed true

4 A ⊥⊥ K Guaranteed false Cannot be determined Guaranteed true

5 A ⊥⊥ G | D,E, F Guaranteed false Cannot be determined Guaranteed true

6 A ⊥⊥ B | D,E, F Guaranteed false Cannot be determined Guaranteed true

7 A ⊥⊥ C | D,F,K Guaranteed false Cannot be determined Guaranteed true

8 A ⊥⊥ G | D Guaranteed false Cannot be determined Guaranteed true

7

(h) Bayes’ Nets: Elimination of a Single Variable

Assume we are running variable elimination, and we currently have the following three factors:

A B f1(A,B)
+a +b 0.1
+a −b 0.5
−a +b 0.2
−a −b 0.5

A C D f2(A,C,D)
+a +c +d 0.2
+a +c −d 0.1
+a −c +d 0.5
+a −c −d 0.1
−a +c +d 0.5
−a +c −d 0.2
−a −c +d 0.5
−a −c −d 0.2

B D f3(B,D)
+b +d 0.2
+b −d 0.2
−b +d 0.5
−b −d 0.1

The next step in the variable elimination is to eliminate B.

(i) [3 pts] Which factors will participate in the elimination process of B?

(ii) [4 pts] Perform the join over the factors that participate in the elimination of B. Your answer should be
a table similar to the tables above, it is your job to figure out which variables participate and what the
numerical entries are.

(iii) [4 pts] Perform the summation over B for the factor you obtained from the join. Your answer should be
a table similar to the tables above, it is your job to figure out which variables participate and what the
numerical entries are.

8

(i) Elimination Sequence

For the Bayes’ net shown below, consider the query P (A|H = +h), and the variable elimination ordering
B,E,C, F,D.

(i) [4 pts] In the table below fill in the factor generated at each step — we did the first row for you.

A	
 B	
 C	

D E	
 F	

H
Variable Factor Current

Eliminated Generated Factors

(no variable eliminated yet) (no factor generated) P (A), P (B), P (C), P (D|A), P (E|B), P (F |C), P (+h|D,E, F)

B f1(E) P (A), P (C), P (D|A), P (F |C), P (+h|D,E, F), f1(E)

E

C

F

D

(ii) [2 pts] Which is the largest factor generated? Assuming all variables have binary-valued domains, how
many entries does the corresponding table have?

(j) Sampling

(i) [2 pts] Consider the query P (A| − b,−c). After rejection sampling we end up with the following four sam-
ples: (+a,−b,−c,+d), (+a,−b,−c,−d), (+a,−b,−c,−d), (−a,−b,−c,−d). What is the resulting estimate
of P (+a| − b,−c)?

.

(ii) [2 pts] Consider again the query P (A|−b,−c). After likelihood weighting sampling we end up with the fol-
lowing four samples: (+a,−b,−c,−d), (+a,−b,−c,−d), (−a,−b,−c,−d), (−a,−b,−c,+d), and respective
weights: 0.1, 0.1, 0.3, 0.3. What is the resulting estimate of P (+a| − b,−c) ?

9

(k) Maximum Likelihood

(i) [4 pts] Geometric Distribution

Consider the geometric distribution, which has P (X = k) = (1− θ)k−1θ. Assume in our training data X
took on the values 4, 2, 7, and 9.

(a) Write an expression for the log-likelihood of the data as a function of the parameter θ.

(b) What is the value of θ that maximizes the log-likelihood, i.e., what is the maximum likelihood estimate
for θ?

(ii) [6 pts] Consider the Bayes’ net consisting of just two variables A,B, and structure A → B. Find the
maximum likelihood estimates and the k = 2 Laplace estimates for each of the table entries based on the
following data: (+a,−b), (+a,+b), (+a,−b), (−a,−b), (−a,−b).

A PML(A) PLaplace, k=2(A)

+a

−a

A B PML(B | A) PLaplace, k=2(B | A)

+a +b

+a −b

−a +b

−a −b

(l) [5 pts] Naive Bayes Describe the naive Bayes bag-of-words model for document classification. Draw the
Bayes net graph, annotate the class label node and the feature nodes, describe what the domain of the features
is, describe any properties of the conditional probability tables that are specific to the bag-of-words (and
not necessarily true in all naive Bayes models). For simplicity it is OK to assume that every document in
consideration has exactly N words and that words come from a dictionary of D words.

10

(m) Perceptron

Consider a multi-class perceptron with current weight vectors wA = (1, 2, 3), wB = (−1, 0, 2), wC = (0,−2, 1).
A new training example is considered, which has feature vector f(x) = (1,−3, 1) and label y∗ = B.

(i) [2 pts]

Which class y would be predicted by the current weight vectors?

(ii) [3 pts]

Would the perceptron update the weight vectors after having seen this training example? If yes, write the
resulting weight vectors below:

wA =

wB =

wC =

11

Q2. [28 pts] Variable Elimination Ordering
Assume all random variables are binary valued.

(a) [8 pts] The Ordering Matters. Consider the sequence of graphs below. For each, regardless of the elimination
ordering, the largest factor produced in finding p(X) will have a table with 22 entries.

X XX, , ...,

Now draw a sequence of graphs such that, if you used the best elimination ordering for each graph, the largest
factor table produced in variable elimination would have a constant number of entries, but if you used the worst
elimination ordering for each graph, the number of entries in the largest factor table would grow exponentially
as you move down the sequence. Provide (i) the sequence of graphs, (ii) the sequence of queries for which
variable elimination is done, (iii) the best ordering, (iv) the worst ordering.

(b) Search Space Formulation for Finding an Ordering. Having established that ordering matters, let’s
investigate search methods that can find a good elimination ordering. The idea is to step through the process
of variable elimination for various orderings of elimination of the hidden variables—and while doing so, only
keep track of (i) which factors are present in each step, and (ii) for each factor which variables participate; but
not actually compute and store the tables corresponding to each factor. (It is the join and the summation that
are the expensive steps in variable elimination—computing which variables would participate in the new factor
formed after the join and summation is relatively cheap.) We will use the following search-space formulation.
We assume the hidden variables are called H1, H2, . . . ,Hn, and that all variables are binary.

• set of states S: a state s consists of the current set of factors, including the variables participating in each
factor but not the corresponding tables, and any subset of {H1, H2, . . . ,Hn} to track which variables yet
have to be eliminated.

• successor function: choose any of the not yet eliminated variables, and update factors and list of not yet
eliminated variables to account for the new elimination.

• cost function: the number of entries in the table representation of the new factor that is generated from
the elimination of the current variable

• goal test: test whether the set of not yet eliminated hidden variables is empty.

• start state: set of conditional probability tables and set of all hidden variables.

12

(i) [4 pts] Complete Search Tree. Consider the query P (D| + e,+c). Draw the complete search tree for
this problem. Annotate nodes with states, and annotate costs and actions on the edges. Hint: the start
state is ({P (A), P (B|A), P (+c|B), P (D|B), P (+e|+ c,D)}, {A,B}).

A	

C	

B	

E	

D

(ii) [4 pts] Solving the Search for the Example Problem.

(a) Clearly mark all optimal plans in the search tree above.

(b) What is the cost of an optimal plan to a goal state?

(iii) [12 pts] Questions about this Search Formulation in General.

For each of the following heuristics state whether they are admissible or not. Justify your answer. (No
credit if there is no justification.) Notation: H is the set of hidden variables not yet eliminated. Q is the
set of query variables. #H is the number of hidden variables not yet eliminated. #Q is the number of
query variables. Again we assume that all variables are binary-valued.

(a) h1: maxHi∈H{ size of factor generated when eliminating Hi next }

Admissible Not Admissible

13

(b) h2: minHi∈H{ size of factor generated when eliminating Hi next }

Admissible Not Admissible

(c) h3: 2#H−1

Admissible Not Admissible

(d) h4: if the current largest factor is of size 2k and k > #Q, then 2k−1 + 2k−2 + . . . 2#Q; otherwise, 0.

Admissible Not Admissible

14

Q3. [14 pts] Bidirectional A* Search
If a search problem has only a single goal state, it is common to perform bidirectional search. In bidirectional search
you build two search trees at the same time: the “forward” search tree is the one we have always worked with
in CS188, the “backward” search tree is one that starts from the goal state, and calls a predecessor (rather than
successor) function to work its way back to the start state. Both searches use the same cost function for transitioning
between two states. There will now also be a backward heuristic, which for each state estimates the distance to the
start state. Bidirectional search can result in significant computational advantages: the size of the search tree built
grows exponentially with the depth of the search tree. If growing a tree from start and goal to each other, these two
trees could meet in the middle, and one ends up with a computational complexity of just twice searching a tree of
half the depth, which are very significant savings.

Recall the pseudo-code for a standard A* graph search

function Graph-Search(problem)

forward-closed <-- empty set

forward-priority-queue <-- Insert(Make-Node(Start-State(problem)), forward-priority-queue)

LOOP DO

IF forward-priority-queue is empty THEN return failure

IF forward-priority-queue is not empty THEN

node <-- pop(forward-priority-queue)

IF (State(node) == Goal-State(problem)) THEN return node

IF State(node) is not in forward-closed THEN

add State(node) to forward-closed

forward-priority-queue <-- Insert-All(ExpandForward(node, problem), forward-priority-queue)

END // LOOP

15

Now consider the following tentative pseudo-code for bidirectional A* search. We assume a consistent forward
heuristic, and a consistent backward heuristic. Concatenation is a function that builds a plan that goes from start
state to goal state by combining a forward partial plan and a backward partial plan that end in the same state.

function Bidirectional-Graph-Search(problem)

forward-closed <-- empty set

backward-closed <-- empty set

forward-priority-queue <-- Insert(Make-Node(Start-State(problem)), forward-priority-queue)

backward-priority-queue <-- Insert(Make-Node(Goal-State(problem)), backward-priority-queue)

LOOP DO

IF forward-priority-queue is empty AND backward-priority-queue is empty THEN return failure

1 IF there exist a node n1 in forward-priority-queue and a node n2 in backward priority queue ...

1 such that State(n1) == State(n2) THEN

1 return Concatenation of n1 and n2

IF forward-priority-queue is not empty THEN

node <-- pop(forward-priority-queue)

IF (State(node) == Goal-State(problem)) THEN return node

2 IF (State(node) is in backward-priority-queue) THEN

2 return Concatenation of node and matching node in backward-priority-queue

3 IF (State(node) is in backward-closed) THEN

3 return Concatenation of node and matching node in backward-closed

IF State(node) is not in forward-closed THEN

add State(node) to forward-closed

forward-priority-queue <-- Insert-All(ExpandForward(node, problem), forward-priority-queue)

IF backward-priority-queue is not empty THEN

node <-- pop(backward-priority-queue)

IF (State(node) == Start-State(problem)) THEN return node

4 IF (State(node) is in forward-priority-queue) THEN

4 return Concatenation of node and matching node in forward-priority-queue

5 IF (State(node) is in forward-closed) THEN

5 return Concatenation of node and matching node in forward-closed

IF State(node) is not in backward-closed THEN

add State(node) to backward-closed

backward-priority-queue <-- Insert-All(ExpandBackward(node, problem), backward-priority-queue)

END // LOOP

16

(a) The IF statements labeled 1, 2, 3, 4, 5 are modifications to try to connect both search trees.

(i) [2 pts] If cutting out all lines of code labeled 1, 2, 3, 4, or 5, will Bidirectional-Graph-Search return an
optimal solution? Briefly justify your answer.

(ii) [2 pts] If amongst the numbered lines of code we only retain 1, is Bidirectional-Graph-Search guaranteed
to be optimal? Briefly justify your answer.

(iii) [2 pts] If amongst the numbered lines of code we only retain 2, is Bidirectional-Graph-Search guaranteed
to be optimal? Briefly justify your answer.

(iv) [2 pts] If amongst the numbered lines of code we only retain 3, is Bidirectional-Graph-Search guaranteed
to be optimal? Briefly justify your answer.

(v) [2 pts] If amongst the numbered lines of code we only retain 4, is Bidirectional-Graph-Search guaranteed
to be optimal? Briefly justify your answer.

(vi) [2 pts] If amongst the numbered lines of code we only retain 5, is Bidirectional-Graph-Search guaranteed
to be optimal? Briefly justify your answer.

(vii) [2 pts] Which numbered code section(s) should be retained to maximally benefit from the bidirectional
search and at the same time retain optimality guarantees?

17

Q4. [8 pts] 3-Player Games
(a) [4 pts] A 3-Player Game.

Consider the 3-player game shown below. The player going first (top of the tree) is the Left player, the player
going second is the Middle player, and the player going last is the Right player, optimizing the left, middle and
right utility value respectively. Fill in the values at all nodes. Note all players maximize their respective utility
value shown in the tree.

(8,-­‐3,-­‐5)	
 (3,	
 -­‐7,	
 4)	
 (4,	
 4,	
 -­‐8)	
 (5,	
 5,	
 -­‐10)	
 (-­‐7,	
 -­‐3,	
 10)	
 (-­‐6,	
 3,	
 3)	
 (-­‐7,	
 7,	
 0)	

(b) [4 pts] Pruning for Zero-Sum 3-Player Game. The same game tree is shown again below.

Now assume that we have the knowledge that the sum of the utilities of all 3 players is always zero. Under this
assumption is any pruning possible similar to α− β pruning? If so mark the pruning on the tree above. If not,
briefly explain why not below.

18

Q5. [12 pts] Learning a Bayes’ Net Structure
(a) You want to learn a Bayes’ net over the random variables A,B,C. You decide you want to learn not only

the Bayes’ net parameters, but also the structure from the data. You are willing to consider the 8 structures
shown below. First you use your training data to perform maximum likelihood estimation of the parameters
of each of the Bayes’ nets. Then for each of the learned Bayes’ nets, you evaluate the likelihood of the training
data (ltrain), and the likelihood of your cross-validation data (lcross). Both likelihoods are shown below each
structure.

A	

C	
 B	

A	

C	
 B	

A	

C	
 B	

A	

C	
 B	

ltrain 0.0001 0.0005 0.0015 0.0100
lcross 0.0001 0.0004 0.0011 0.0009

(a) (b) (c) (d)

A	

C	
 B	

A	

C	
 B	

A	

C	
 B	

A	

C	
 B	

ltrain 0.0008 0.0015 0.0020 0.0100
lcross 0.0006 0.0011 0.0010 0.0009

(e) (f) (g) (h)

(i) [4 pts] Which Bayes’ net structure will (on expectation) perform best on test-data? (If there is a tie, list
all Bayes’ nets that are tied for the top spot.) Justify your answer.

(ii) [4 pts] Two pairs of the learned Bayes’ nets have identical likelihoods. Explain why this is the case.

(iii) [4 pts] For every two structures S1 and S2, where S2 can be obtained from S1 by adding one or more
edges, ltrain is higher for S2 than for S1. Explain why this is the case.

19

