Reinforcement Learning

- Reinforcement learning:
 - Still have an MDP:
 - A set of states \(s \in S \)
 - A set of actions (per state) \(A \)
 - A model \(T(s,a,s') \)
 - A reward function \(R(s,a,s') \)
 - Still looking for a policy \(\pi(s) \)
 - New twist: don’t know \(T \) or \(R \)
 - I.e. don’t know which states are good or what the actions do
 - Must actually try actions and states out to learn

Example: Animal Learning

- RL studied experimentally for more than 60 years in psychology
 - Rewards: food, pain, hunger, drugs, etc.
 - Mechanisms and sophistication debated
- Example: foraging
 - Bees learn near-optimal foraging plan in field of artificial flowers with controlled nectar supplies
 - Bees have a direct neural connection from nectar intake measurement to motor planning area

Example: Backgammon

- Reward only for win / loss in terminal states, zero otherwise
- TD-Gammon learns a function approximation to \(V(s) \) using a neural network
- Combined with depth 3 search, one of the top 3 players in the world
- You could imagine training Pacman this way…
- … but it’s tricky!

Passive Learning

- Simplified task
 - You don’t know the transitions \(T(s,a,s') \)
 - You don’t know the rewards \(R(s,a,s') \)
 - You are given a policy \(\pi(s) \)
 - Goal: learn the state values (and maybe the model)
 - i.e., policy evaluation
 - In this case:
 - Learner “along for the ride”
 - No choice about what actions to take
 - Just execute the policy and learn from experience
 - We’ll get to the active case soon
 - This is NOT offline planning!

Example: Direct Estimation

- Episodes:
 - \((1,1)\) up -1
 - \((1,2)\) up -1
 - \((1,3)\) right -1
 - \((2,3)\) right -1
 - \((3,3)\) right -1
 - (3,2) up -1
 - (3,3) right -1
 - (4,3) exit +100

- \(\gamma = 1, R = -1 \)
- \(V(1,1) = (92 + -106) / 2 = -2 \)
- \(V(3,3) = (99 + 97 + -102) / 3 = 31.3 \)
Model-Based Learning

- **Idea:**
 - Learn the model empirically (rather than values)
 - Solve the MDP as if the learned model were correct

- **Empirical model learning**
 - Simplest case:
 - Count outcomes for each \(s, a\)
 - Normalize to give estimate of \(T(s, a, s')\)
 - Discover \(R(s, a, s')\) the first time we experience \((s, a, s')\)
 - More complex learners are possible (e.g. if we know that all squares have related action outcomes, e.g. “stationary noise”)

Example: Model-Based Learning

- **Episodes:**
 - \((1, 1)\) up -1
 - \((1, 1)\) up -1
 - \((1, 2)\) up -1
 - \((1, 2)\) up -1
 - \((1, 3)\) right -1
 - \((1, 3)\) right -1
 - \((2, 3)\) right -1
 - \((2, 3)\) right -1
 - \((3, 3)\) right -1
 - \((3, 3)\) right -1
 - \((3, 2)\) up -1
 - \((3, 2)\) up -1
 - \((4, 2)\) ext -100
 - \((3, 3)\) right -1
 - \((3, 3)\) right -1
 - \((4, 3)\) ext +100

Sample Avg to Replace Expectation?

\[
V_{t+1}^π(s) = \sum_{s'} T(s, π(s), s')[R(s, π(s), s') + γV^π_t(s')]
\]

- Who needs \(T\) and \(R\)? Approximate the expectation with samples (drawn from \(T\)!

\[
sample_1 = R(s, a, s'_1) + γV^π_t(s'_1)
\]
\[
sample_2 = R(s, a, s'_2) + γV^π_t(s'_2)
\]
\[
\vdots
\]
\[
sample_k = R(s, a, s'_k) + γV^π_t(s'_k)
\]

\[
V_{t+1}^π(s) = \frac{1}{k} \sum_k sample_k
\]

Model-Free Learning

- **Big idea:** why bother learning \(T\)?
 - Update \(V\) each time we experience a transition
 - Frequent outcomes will contribute more updates (over time)

- **Temporal difference learning (TD)**
 - Policy still fixed!
 - Move values toward value of whatever successor occurs: running average!

\[
V^π(s) = \sum_{s'} T(s, π(s), s')[R(s, π(s), s') + γV^π(s')]
\]

\[
sample = R(s, π(s), s') + γV^π(s')
\]

\[
V^π(s) = (1 - α)V^π(s) + αsample
\]

Example: TD Policy Evaluation

\[
V^π(s) = (1 - α)V^π(s) + α[R(s, π(s), s') + γV^π(s')]
\]

- \((1, 1)\) up -1
- \((1, 1)\) up -1
- \((1, 2)\) up -1
- \((1, 2)\) up -1
- \((1, 3)\) right -1
- \((1, 3)\) right -1
- \((2, 3)\) right -1
- \((2, 3)\) right -1
- \((3, 3)\) right -1
- \((3, 3)\) right -1
- \((3, 2)\) up -1
- \((3, 2)\) up -1
- \((4, 2)\) ext -100
- \((3, 3)\) right -1
- \((3, 3)\) right -1
- \((4, 3)\) ext +100
- \((4, 3)\) ext +100

Take \(γ = 1\), \(α = 0.5\)
Problems with TD Value Learning

- TD value learning is model-free for policy evaluation.
- However, if we want to turn our value estimates into a policy, we’re sunk:
 \[\pi(s) = \arg \max_a Q^*(s,a) \]
 \[Q^*(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V^*(s') \right] \]
- Idea: learn Q-values directly.
- Makes action selection model-free too!

Active Learning

- Full reinforcement learning
 - You don’t know the transitions \(T(s,a,s') \)
 - You don’t know the rewards \(R(s,a,s') \)
 - You can choose any actions you like
 - Goal: learn the optimal policy (maybe values)
- In this case:
 - Learner makes choices!
 - Fundamental tradeoff: exploration vs. exploitation
 - This is NOT offline planning!

Model-Based Learning

- In general, want to learn the optimal policy, not evaluate a fixed policy.
- Idea: adaptive dynamic programming
 - Learn an initial model of the environment:
 - Solve for the optimal policy for this model (value or policy iteration)
 - Refine model through experience and repeat
 - Crucial: we have to make sure we actually learn about all of the model.

Example: Greedy ADP

- Imagine we find the lower path to the good exit first.
- Some states will never be visited following this policy from \((1,1)\).
- We’ll keep re-using this policy because following it never collects the regions of the model we need to learn the optimal policy.

What Went Wrong?

- Problem with following optimal policy for current model:
 - Never learn about better regions of the space if current policy neglects them.
- Fundamental tradeoff: exploration vs. exploitation
 - Exploration: must take actions with suboptimal estimates to discover new rewards and increase eventual utility.
 - Exploitation: once the true optimal policy is learned, exploration reduces utility.
 - Systems must explore in the beginning and exploit in the limit.

Q-Value Iteration

- Value iteration: find successive approx optimal values
 - Start with \(V_0(s) = 0 \), which we know is right (why?).
 - Given \(V_i \), calculate the values for all states for depth \(i+1 \):
 \[V_{i+1}(s) \leftarrow \max_a \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V_i(s') \right] \]
- But Q-values are more useful!
 - Start with \(Q_0(s,a) = 0 \), which we know is right (why?).
 - Given \(Q_i \), calculate the q-values for all q-states for depth \(i+1 \):
 \[Q_{i+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_i(s',a') \right] \]
Q-Learning

- Learn $Q^*(s,a)$ values
 - Receive a sample (s,a,s',r)
 - Consider your old estimate: $Q(s,a)$
 - Consider your new sample estimate:

 $$Q^*(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q^*(s',a') \right]$$

 $\text{sample} = R(s,a,s') + \gamma \max_{a'} Q(s',a')$

- Incorporate the new estimate into a running average:

 $$Q(s,a) \leftarrow (1 - \alpha)Q(s,a) + \alpha [\text{sample}]$$

Q-Learning Properties

- Will converge to optimal policy
 - If you explore enough
 - If you make the learning rate small enough
 - But not decrease it too quickly!
 - Basically doesn’t matter how you select actions (!)

- Neat property: learns optimal q-values regardless of action selection noise (some caveats)

Exploration / Exploitation

- Several schemes for forcing exploration
 - Simplest: random actions (ϵ-greedy)
 - Every time step, flip a coin
 - With probability ϵ, act randomly
 - With probability $1-\epsilon$, act according to current policy

- Problems with random actions?
 - You do explore the space, but keep thrashing around once learning is done
 - One solution: lower ϵ over time
 - Another solution: exploration functions

Exploration Functions

- When to explore
 - Random actions: explore a fixed amount
 - Better idea: explore areas whose badness is not (yet) established

- Exploration function
 - Takes a value estimate and a count, and returns an optimistic utility, e.g. $f(u,n) = u + k/n$ (exact form not important)

 $$Q_{i+1}(s,a) \leftarrow Q(s,a) + \gamma \max_{a'} Q_i(s',a')$$

 $$Q_{i+1}(s,a) \leftarrow Q(s,a) + \gamma \max_{a'} f(Q(s',a'), N(s',a'))$$

Q-Learning

- Q-learning produces tables of q-values:

 ![DEMO – Crawler Q's]

- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory

- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar states
 - This is a fundamental idea in machine learning, and we’ll see it over and over again
Feature-Based Representations

- **Solution:** describe a state using a vector of features.
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state.
- **Example features:**
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - 1 (dot to dot?)
 - Is Pacman in a tunnel? (0/1)
 - …… etc.
- Can also describe a q-state (s, a) with features (e.g. action moves closer to food).

Linear Feature Functions

- **Using a feature representation, we can write a q function (or value function) for any state using a few weights:**

 \[V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s) \]

 \[Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a) \]

- **Advantage:** our experience is summed up in a few powerful numbers.
- **Disadvantage:** states may share features but be very different in value.

Example: Pacman

- Let’s say we discover through experience that this state is bad:
- In naïve q learning, we know nothing about this state or its q states:
- Or even this one!

Example: Q-Pacman

\[Q(s, a) = 4.0 f_{DOT}(s, a) - 1.0 f_{GHOST}(s, a) \]

- \(f_{DOT}(s, \text{NORTH}) = 0.5 \)
- \(f_{GHOST}(s, \text{NORTH}) = 1.0 \)
- \(Q(s, a) = +1 \)
- \(r(s, a, s') = -500 \)
- \(\text{error} = -501 \)
- \(w_{DOT} \leftarrow 4.0 + \alpha [-501] 0.5 \)
- \(w_{GHOST} \leftarrow -1.0 + \alpha [-501] 1.0 \)
- \(Q(s, a) = 3.0 f_{DOT}(s, a) - 3.0 f_{GHOST}(s, a) \)

Function Approximation

\[Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a) \]

- **Q-learning with linear q-functions:**

 \[Q(s, a) \leftarrow Q(s, a) + \alpha [\text{error}] \]
 \[w_i \leftarrow w_i + \alpha [\text{error}] f_i(s, a) \]

- **Intuitive interpretation:**
 - Adjust weights of active features.
 - E.g. if something unexpectedly bad happens, disprefer all states with that state’s features.
 - **Formal justification:** online least squares.

Linear regression

Given examples \((x_i; y_i)_{i=1}^n\),
Predict \(y_{n+1}\) given a new point \(x_{n+1}\).
Linear regression

\[\hat{y}_{n+1} = w_0 + w_1 x_{n+1} \]

Prediction

Ordinary Least Squares (OLS)

\[\text{Minimizing Error} \]

\[E(w) = \frac{1}{2} \sum \left(\sum_k f_k(x_i)w_k - y_i \right)^2 \]

\[\frac{\partial E}{\partial w_m} = \sum_i \left(\sum_k f_k(x_i)w_k - y_i \right) f_m(x_i) \]

\[E - E + \alpha \sum_i \left(\sum_k f_k(x_i)w_k - y_i \right) f_m(x_i) \]

Value update explained:

\[w_i \leftarrow w_i + \alpha [\text{error}] f_i(s,a) \]

Overfitting

Policy Search

- Problem: often the feature-based policies that work well aren’t the ones that approximate \(V \) / \(Q \) best
 - E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they still produced good decisions
 - We’ll see this distinction between modeling and prediction again later in the course
- Solution: learn the policy that maximizes rewards rather than the value that predicts rewards
- This is the idea behind policy search, such as what controlled the upside-down helicopter
Policy Search

- Simplest policy search:
 - Start with an initial linear value function or q-function
 - Nudge each feature weight up and down and see if your policy is better than before

- Problems:
 - How do we tell the policy got better?
 - Need to run many sample episodes!
 - If there are a lot of features, this can be impractical

Policy Search*

- Advanced policy search:
 - Write a stochastic (soft) policy:
 \[\pi_w(s) \propto e^{\sum_i w_i f_i(s, a)} \]
 - Turns out you can efficiently approximate the derivative of the returns with respect to the parameters w (details in the book, but you don’t have to know them)
 - Take uphill steps, recalculate derivatives, etc.

Take a Deep Breath…

- We’re done with search and planning!
- Next, we’ll look at how to reason with probabilities
 - Diagnosis
 - Tracking objects
 - Speech recognition
 - Robot mapping
 - … lots more!
- Last part of course: machine learning