The Story So Far: MDPs and RL

Things we know how to do:
- If we know the MDP
 - Compute V^*, Q^*, s^* exactly
 - Evaluate a fixed policy π
- If we don’t know the MDP
 - We can estimate the MDP using some techniques
 - We can estimate V for a fixed policy π
 - We can estimate $Q^*(s,a)$ for the optimal policy while executing an exploration policy

Techniques:
- Model-based DPs
 - Value and policy iteration
 - Policy evaluation
- Model-based RL
- Model-free RL:
 - Value learning
 - Q-learning

Model-Free Learning

Model-free (temporal difference) learning
- Experience world through episodes $(s,a,r,s',r',s'',r'',s''',\ldots)$
- Update estimates each transition (s,a,r,s')
- Over time, updates will mimic Bellman updates

Q-Learning Properties

- Will converge to optimal policy
 - If you explore enough (i.e. visit each q-state many times)
 - If you make the learning rate small enough
 - Basically doesn’t matter how you select actions (!)
- Off-policy learning: learns optimal q-values, not the values of the policy you are following
Q-Learning

- Q-learning produces tables of q-values:

Exploration / Exploitation

- Several schemes for forcing exploration
 - Simplest: random actions (ε-greedy)
 - Every time step, flip a coin
 - With probability ε, act randomly
 - With probability 1-ε, act according to current policy
 - Regret: expected gap between rewards during learning and rewards from optimal action
 - Q-learning with random actions will converge to optimal values, but possibly very slowly, and will get low rewards on the way
 - Results will be optimal but regret will be large
 - How to make regret small?

Exploration Functions

- When to explore
 - Random actions: explore a fixed amount
 - Better ideas: explore areas whose badness is not (yet) established, explore less over time

- One way: exploration function
 - Takes a value estimate and a count, and returns an optimistic utility, e.g. $f(u, n) = u + k/n$ (exact form not important)

 $Q_{t+1}(s, a) = R(s, a, s') + \gamma \max_{a'} Q_t(s', a')$
 $Q_{t+1}(s, a) = R(s, a, s') + \gamma \max_{a'} f(Q_t(s', a'), N(s', a'))$

Q-Learning

- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory

- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar states
 - This is a fundamental idea in machine learning, and we’ll see it over and over again

Example: Pacman

- Let’s say we discover through experience that this state is bad:

- In naïve q learning, we know nothing about this state or its q states:

- Or even this one!

Feature-Based Representations

- Solution: describe a state using a vector of features (properties)
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - 1 / (dist to dot)!
 - Is Pacman in a tunnel? (0/1)
 - …… etc.
 - Is it the exact state on this slide?
 - Can also describe a q-state (s, a) with features (e.g. action moves closer to food)
Linear Feature Functions

- Using a feature representation, we can write a q function (or value function) for any state using a few weights:
 \[V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s) \]
 \[Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a) \]
- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but actually be very different in value!

Function Approximation

- Q-learning with linear q-functions:
 \[Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a) \]
- Exact Q’s
- Approximate Q’s
 - Intuitive interpretation:
 - Adjust weights of active features
 - E.g. if something unexpectedly bad happens, disprefer all states with that state’s features
 - Formal justification: online least squares

Example: Q-Pacman

- \[Q(s, a) = 4.0 f_{DOT}(s, a) - 1.0 f_{GST}(s, a) \]
- \[f_{DOT}(s, NORTH) = 0.5 \]
- \[f_{GST}(s, NORTH) = 1.0 \]
- \[Q(s, a) = +1 \]
- \[R(s, a, s') = -500 \]
- \[\text{difference} = -501 \]
- \[w_{DOT} \leftarrow 4.0 + \alpha [-501] 0.5 \]
- \[w_{GST} \leftarrow -1.0 + \alpha [-501] 1.0 \]
- \[Q(s, a) = 3.0 f_{DOT}(s, a) - 3.0 f_{GST}(s, a) \]

Ordinary Least Squares (OLS)

- \[\text{total error} = \sum_i (y_i - \hat{y}_i)^2 = \sum_i \left(y_i - \sum_k w_k f_k(x_i) \right)^2 \]

Linear Regression

- Prediction \[\hat{y} = w_0 + w_1 f_1(x) + w_2 f_2(x) \]

Minimizing Error

- Imagine we had only one point \(x \) with features \(f(x) \):
 \[\text{error}(w) = \frac{1}{2} \left(y - \sum_k w_k f_k(x) \right)^2 \]
 \[\frac{\partial \text{error}(w)}{\partial w_m} = - \left(y - \sum_k w_k f_k(x) \right) f_m(x) \]
 \[w_m \leftarrow w_m + \alpha \left(y - \sum_k w_k f_k(x) \right) f_m(x) \]
- Approximate q update explained:
 \[w_m \leftarrow w_m + \alpha \left[r + \gamma \max_{a'} Q(s', a') - Q(s, a) \right] f_m(s, a) \]
Problem: often the feature-based policies that work well aren’t the ones that approximate V / Q best
- E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they still produced good decisions
- We’ll see this distinction between modeling and prediction again later in the course

Solution: learn the policy that maximizes rewards rather than the value that predicts rewards

This is the idea behind policy search, such as what controlled the upside-down helicopter

Policy Search*

Advanced policy search:
- Write a stochastic (soft) policy:
 \[\pi_w(s) \propto e^{\sum_i w_i f_i(s,a)} \]
- Turns out you can efficiently approximate the derivative of the returns with respect to the parameters w (optional material)
- Take uphill steps, recalculate derivatives, etc.

We’re done with search and planning!

Next, we’ll look at how to reason with probabilities
- Diagnosis
- Tracking objects
- Speech recognition
- Robot mapping
- … lots more!

Last part of course: machine learning

Take a Deep Breath…