CS 188 Fall 2018 Introduction to Artificial Intelligence

Written HW 6

Due: Monday 10/15/2018 at 11:59pm (submit via Gradescope).

Leave self assessment boxes blank for this due date.

Self assessment due: Monday 10/22/2018 at 11:59pm (submit via Gradescope)

For the self assessment, fill in the self assessment boxes in your original submission (you can download a PDF copy of your submission from Gradescope – be sure to delete any extra title pages that Gradescope attaches). For each subpart where your original answer was correct, write "correct." Otherwise, write and explain the correct answer. Do not leave any boxes empty.

If you did not submit the homework (or skipped some questions) but wish to receive credit for the selfassessment, we ask that you first complete the homework without looking at the solutions, and then perform the self assessment afterwards.

Policy: Can be solved in groups (acknowledge collaborators) but must be written up individually

Submission: Your submission should be a PDF that matches this template. Each page of the PDF should align with the corresponding page of the template (page 1 has name/collaborators, question 1 begins on page 2, etc.). **Do not reorder, split, combine, or add extra pages.** The intention is that you print out the template, write on the page in pen/pencil, and then scan or take pictures of the pages to make your submission. You may also fill out this template digitally (e.g. using a tablet.)

First name	
Last name	
SID	
Collaborators	

Q1. Probability

- (a) For the following questions, you will be given a set of probability tables and a set of conditional independence assumptions. Given these tables and independence assumptions, write an expression for the requested probability tables. Keep in mind that your expressions cannot contain any probabilities other than the given probability tables. If it is not possible, mark "Not possible."
 - (i) Using probability tables $\mathbf{P}(\mathbf{A})$, $\mathbf{P}(\mathbf{A} \mid \mathbf{C})$, $\mathbf{P}(\mathbf{B} \mid \mathbf{C})$, $\mathbf{P}(\mathbf{C} \mid \mathbf{A}, \mathbf{B})$ and no conditional independence assumptions, write an expression to calculate the table $\mathbf{P}(\mathbf{A}, \mathbf{B} \mid \mathbf{C})$.

 $\mathbf{P}(\mathbf{A}, \mathbf{B} \mid \mathbf{C}) =$

O Not possible.

(ii) Using probability tables $\mathbf{P}(\mathbf{A})$, $\mathbf{P}(\mathbf{A} \mid \mathbf{C})$, $\mathbf{P}(\mathbf{B} \mid \mathbf{A})$, $\mathbf{P}(\mathbf{C} \mid \mathbf{A}, \mathbf{B})$ and no conditional independence assumptions, write an expression to calculate the table $\mathbf{P}(\mathbf{B} \mid \mathbf{A}, \mathbf{C})$.

 $\mathbf{P}(\mathbf{B} \mid \mathbf{A}, \mathbf{C}) =$

 \bigcirc Not possible.

(iii) Using probability tables P(A | B), P(B), P(B | A, C), P(C | A) and conditional independence assumption $A \perp B$, write an expression to calculate the table P(C).

 $\mathbf{P}(\mathbf{C}) =$ _____

(iv) Using probability tables P(A | B, C), P(B), P(B | A, C), P(C | B, A) and conditional independence assumption $A \perp B | C$, write an expression for P(A, B, C).

 $\mathbf{P}(\mathbf{A}, \mathbf{B}, \mathbf{C}) =$

 \bigcirc Not possible.

 \bigcirc Not possible.

Self assessment If correct, write "correct" in the box. Otherwise, write and explain the correct answer.

- (b) For each of the following equations, select the *minimal set* of conditional independence assumptions necessary for the equation to be true.
 - (i) $\mathbf{P}(\mathbf{A}, \mathbf{C}) = \mathbf{P}(\mathbf{A} \mid \mathbf{B}) \mathbf{P}(\mathbf{C})$

 $\begin{array}{c|c} A \perp B \\ A \perp B \mid C \\ A \perp C \\ A \perp C \mid B \end{array}$

- $\Box \quad B \perp \!\!\!\perp C$ $\Box \quad B \perp \!\!\!\perp C \mid A$
- \Box No independence assumptions needed.
- (ii) $\mathbf{P}(\mathbf{A} \mid \mathbf{B}, \mathbf{C}) = \frac{\mathbf{P}(\mathbf{A}) \ \mathbf{P}(\mathbf{B} \mid \mathbf{A}) \ \mathbf{P}(\mathbf{C} \mid \mathbf{A})}{\mathbf{P}(\mathbf{B} \mid \mathbf{C}) \ \mathbf{P}(\mathbf{C})}$ $\square \quad A \perp \!\!\!\perp B$ $\square \quad A \perp \!\!\!\perp B \mid C$ $\square \quad A \perp \!\!\!\perp C$
 - $\Box \quad A \perp\!\!\!\perp C \mid B$

- \Box No independence assumptions needed.

(iii) $\mathbf{P}(\mathbf{A}, \mathbf{B}) = \sum_{\mathbf{c}} \mathbf{P}(\mathbf{A} \mid \mathbf{B}, \mathbf{c}) \mathbf{P}(\mathbf{B} \mid \mathbf{c}) \mathbf{P}(\mathbf{c})$

- $\Box \quad A \perp \!\!\!\perp B$
- $\Box A \perp B \mid C$
- $\Box A \perp L C$
- $\Box A \perp \!\!\!\perp C \mid B$

- $\square \quad B \perp \!\!\!\perp C$
- \square $B \perp \!\!\!\perp C \mid A$
- □ No independence assumptions needed.
- (iv) P(A, B | C, D) = P(A | C, D) P(B | A, C, D)
 - $\Box A \perp B$
 - $\Box A \perp B \mid C$
 - $\Box \quad A \perp \!\!\!\perp B \mid D$
 - $\Box \quad C \perp D$

- $\Box \quad C \perp \!\!\!\perp D \mid A$
- $\Box \quad C \perp \!\!\!\perp D \mid B$
- \Box No independence assumptions needed.

Self assessment If correct, write "correct" in the box. Otherwise, write and explain the correct answer.

(c) (i) Mark all expressions that are equal to $P(A \mid B)$, given no independence assumptions.

- $\Box \quad \sum_{c} P(A \mid B, c)$
- $\Box \quad \sum_{c} P(A, c \mid B)$
- $\frac{P(B|A) \ P(A|C)}{\sum_{c} P(B,c)}$
- $\frac{\sum_{c} P(A,B,c)}{\sum_{c} P(B,c)}$

 $\frac{P(A,C|B)}{P(C|B)}$ \Box $\frac{P(A|C,B) P(C|A,B)}{P(C|B)}$

- □ None of the provided options.
- (ii) Mark all expressions that are equal to P(A, B, C), given that $A \perp B$.
 - $\square \quad P(A \mid C) \ P(C \mid B) \ P(B)$
 - \square $P(A) P(B) P(C \mid A, B)$
 - $\square P(C) P(A \mid C) P(B \mid C)$
 - $\square P(A) P(C \mid A) P(B \mid C)$

- $\square P(A) P(B \mid A) P(C \mid A, B)$
- \square P(A,C) $P(B \mid A,C)$
- □ None of the provided options.

(iii) Mark all expressions that are equal to P(A, B | C), given that $A \perp B | C$.

 $\square \quad P(A \mid C) \ P(B \mid C)$ P(A) P(B|A) P(C|A,B) $\sum_{c} P(A,B,c)$ $P(A \mid B) P(B \mid C)$ P(C) P(B|C) P(A|C)

 $\overrightarrow{P(C|A,B)}$

- $\underline{\sum_{c} P(A,B,c)}$ P(C)
- P(C,A|B) P(B)P(C)
- None of the provided options.

Self assessment If correct, write "correct" in the box. Otherwise, write and explain the correct answer.

Q2. Bayes' Nets: Representation

Assume we are given the following ten Bayes' nets, labeled ${\bf G_1}$ to ${\bf G_{10}}:$

Assume we are also given the following three Bayes' nets, labeled ${\bf B_1}$ to ${\bf B_3}:$

(continued on next page)

(a)	Assume the follow	we know that a jo ving Bayes' nets	oint d	istribution	$\mathbf{d_1}$ (over \mathbf{A}	\mathbf{B}, \mathbf{C}) can be represer represent d ₁	nted by I	Bayes' net $\mathbf{B_1}$.	Mark all of	
		G ₁		G ₂		G ₃		G_4		G_5	
		\mathbf{G}_{6}		G_7		G_8		G_9		G_{10}	
		None of the abo	ve.								
	Self assessment If correct, write "correct" in the box. Otherwise, write and explain the correct answer.										
(b)	Assume the follow	we know that a jo ving Bayes' nets	oint d that a	istribution are guarant	$\mathbf{d_2}$ (over \mathbf{A} eed to be a	\mathbf{B}, \mathbf{C}) can be represer represent $\mathbf{d_2}$.	nted by I	Bayes' net \mathbf{B}_2 .	Mark all of	
		G_1		G_2		G_3		${ m G_4}$		G_5	
		G ₆ None of the abo	ve.	G_7		G_8		G_9		G_{10}	
	Self as	sessment If corr	ect, w	rite " correct	" in the box.	Otherv	wise, write and ex	plain the	e correct answer.		
(c)	Assume all of the	we know that a j following Bayes'	oint o nets	listribution that are gu	d₃ (over A aranteed to	., B , C) be al	c) <i>cannot</i> be repole to represent of	presenteo d ₃ .	d by Bayes' ne	t B ₃ . Mark	
		G_1		G_2		G_3		G_4		G_5	
		G_6		G_7		$\mathbf{G_8}$		G_9		G_{10}	
		None of the abo	ve.								
	Self as	sessment If corr	ect, w	rite " correct	" in the box.	Otherv	wise, write and ex	plain the	e correct answer.		
	L]	
(d)	Assume B ₂ . Mar	we know that a j k all of the follow	oint (zing H	distribution Bayes' nets	$\mathbf{d_4}$ (over A that are gu	A , B , C arante	C) can be represe ed to be able to	ented by represer	Bayes' nets E \mathbf{d}_{4} .	B_1, B_2, and	
		G_1		G_2		G ₃		G ₄		G_5	
		\mathbf{G}_{6}		G_7		G_8		G_9		G_{10}	
		None of the abo	ve.								
	Self as	sessment If corr	ect, w	rite " correct	" in the box.	Otherv	wise, write and ex	plain the	e correct answer.		
	L										