
CS 188 Introduction to Artificial Intelligence
Fall 2018 Note 2
These lecture notes are heavily based on notes originally written by Nikhil Sharma.

Constraint Satisfaction Problems
In the previous note, we learned how to find optimal solutions to search problems, a type of planning
problem. Now, we’ll learn about solving a related class of problems, constraint satisfaction problems
(CSPs). Unlike search problems, CSPs are a type of identification problem, problems in which we must
simply identify whether a state is a goal state or not, with no regard to how we arrive at that goal. CSPs are
defined by three factors:

1. Variables - CSPs possess a set of N variables X1, ...,XN that can each take on a single value from some
defined set of values.

2. Domain - A set {x1, ...,xd} representing all possible values that a CSP variable can take on.

3. Constraints - Constraints define restrictions on the values of variables, potentially with regard to other
variables.

Consider the N-queens identification problem: given an N×N chessboard, can we find a configuration in
which to place N queens on the board such that no two queens attack each another?

We can formulate this problem as a CSP as follows:

1. Variables - Xi j, with 0≤ i, j < N. Each Xi j represents a grid position on our N×N chessboard, with i
and j specifying the row and column number respectively.

2. Domain - {0,1}. Each Xi j can take on either the value 0 or 1, a boolean value representing the
existence of a queen at position (i, j) on the board.

3. Constraints -

• ∀i, j,k (Xi j,Xik)∈ {(0,0),(0,1),(1,0)}. This constraint states that if two variables have the same
value for i, only one of them can take on a value of 1. This effectively encapsulates the condition
that no two queens can be in the same row.

CS 188, Fall 2018, Note 2 1



• ∀i, j,k (Xi j,Xk j) ∈ {(0,0),(0,1),(1,0)}. Almost identically to the previous constraint, this con-
straint states that if two variables have the same value for j, only one of them can take on a value
of 1, encapsulating the condition that no two queens can be in the same column.

• ∀i, j,k (Xi j,Xi+k, j+k) ∈ {(0,0),(0,1),(1,0)}. With similar reasoning as above, we can see that
this constraint and the next represent the conditions that no two queens can be in the same major
or minor diagonals, respectively.

• ∀i, j,k (Xi j,Xi+k, j−k) ∈ {(0,0),(0,1),(1,0)}.
• ∑

i, j
Xi j = N. This constraint states that we must have exactly N grid positions marked with a 1,

and all others marked with a 0, capturing the requirement that there are exactly N queens on the
board.

Constraint satisfaction problems are NP-hard, which loosely means that there exists no known algorithm for
finding solutions to them in polynomial time. Given a problem with N variables with domain of size O(d) for
each variable, there are O(dN) possible assignments, exponential in the number of variables. We can often
get around this caveat by formulating CSPs as search problems, defining states as partial assignments
(variable assignments to CSPs where some variables have been assigned values while others have not).
Correspondingly, the successor function for a CSP state outputs all states with one new variable assigned,
and the goal test verifies all variables are assigned and all constraints are satisfied in the state it’s testing.
Constraint satisfaction problems tend to have significantly more structure than traditional search problems,
and we can exploit this structure by combining the above formulation with appropriate heuristics to hone in
on solutions in a feasible amount of time.

Constraint Graphs
Let’s introduce a second CSP example: map coloring. Map coloring solves the problem where we’re given
a set of colors and must color a map such that no two adjacent states or regions have the same color.

Constraint satisfaction problems are often represented as constraint graphs, where nodes represent variables
and edges represent constraints between them. There are many different types of constraints, and each is
handled slightly differently:

• Unary Constraints - Unary constraints involve a single variable in the CSP. They are not represented
in constraint graphs, instead simply being used to prune the domain of the variable they constrain
when necessary.

CS 188, Fall 2018, Note 2 2



• Binary Constraints - Binary constraints involve two variables. They’re represented in constraint
graphs as traditional graph edges.

• Higher-order Constraints - Constraints involving three or more variables can also be represented with
edges in a CSP graph, they just look slightly unconventional.

Consider map coloring the map of Australia:

The constraints in this problem are simply that no two adjacent states can be the same color. As a result, by
drawing an edge between every pair of states that are adjacent to one another, we can generate the constraint
graph for the map coloring of Australia as follows:

The value of constraint graphs is that we can use them to extract valuable information about the structure of
the CSPs we are solving. By analyzing the graph of a CSP, we can determine things about it like whether
it’s sparsely or densely connected/constrained and whether or not it’s tree-structured. We’ll cover this more
in depth as we discuss solving constraint satisfaction problems in more detail.

CS 188, Fall 2018, Note 2 3



Solving Constraint Satisfaction Problems
Constraint satisfaction problems are traditionally solved using a search algorithm known as backtracking
search. Backtracking search is an optimization on depth first search used specifically for the problem of
constraint satisfaction, with improvements coming from two main principles:

1. Fix an ordering for variables, and select values for variables in this order. Because assignments are
commutative (e.g. assigning WA = Red, NT = Green is identical to NT = Green, WA = Red), this
is valid.

2. When selecting values for a variable, only select values that don’t conflict with any previously as-
signed values. If no such values exist, backtrack and return to the previous variable, changing its
value.

The pseudocode for how recursive backtracking works is presented below:

For a visualization of how this process works, consider the partial search trees for both depth first search
and backtracking search in map coloring:

CS 188, Fall 2018, Note 2 4



Note how DFS regretfully colors everything red before ever realizing the need for change, and even then
doesn’t move too far in the right direction towards a solution. On the other hand, backtracking search only
assigns a value to a variable if that value violates no constraints, leading to a significantly less backtracking.
Though backtracking search is a vast improvement over the brute-forcing of depth first search, we can get
more gains in speed still with further improvements through filtering, variable/value ordering, and structural
explotation.

Filtering
The first improvement to CSP performance we’ll consider is filtering, which checks if we can prune the
domains of unassigned variables ahead of time by removing values we know will result in backtracking.
A naïve method for filtering is forward checking, which whenever a value is assigned to a variable Xi,
prunes the domains of unassigned variables that share a constraint with Xi that would violate the constraint
if assigned. Whenever a new variable is assigned, we can run forward checking and prune the domains
of unassigned variables adjacent to the newly assigned variable in the constraint graph. Consider our map
coloring example, with unassigned variables and their potential values:

Note how as we assign WA = red and then Q = green, the size of the domains for NT , NSW , and SA (states
adjacent to WA, Q, or both) decrease in size as values are eliminated. The idea of forward checking can be
generalized into the principle of arc consistency. For arc consistency, we interpret each undirected edge of
the constraint graph for a CSP as two directed edges pointing in opposite directions. Each of these directed
edges is called an arc. The arc consistency algorithm works as follows:

• Begin by storing all arcs in the constraint graph for the CSP in a queue Q.

• Iteratively remove arcs from Q and enforce the condition that in each removed arc Xi −→ X j, for every
remaining value v for the tail variable Xi, there is at least one remaining value w for the head variable
X j such that Xi = v,X j = w does not violate any constraints. If some value v for Xi would not work
with any of the remaining values for X j, we remove v from the set of possible values for Xi.

• If at least one value is removed for Xi when enforcing arc consistency for an arc Xi −→ X j, add arcs
of the form Xk −→ Xi to Q, for all unassigned variables Xk. If an arc Xk −→ Xi is already in Q during
this step, it doesn’t need to be added again.

• Continue until Q is empty, or the domain of some variable is empty and triggers a backtrack.

The arc consistency algorithm is typically not the most intuitive, so let’s walk through a quick example with
map coloring:

CS 188, Fall 2018, Note 2 5



We begin by adding all arcs between unassigned variables sharing a constraint to a queue Q, which gives us

Q = [SA→V,V → SA,SA→ NSW,NSW → SA,SA→ NT,NT → SA,V → NSW,NSW →V ]

For our first arc, SA→V , we see that for every value in the domain of SA, {blue}, there is at least one value
in the domain of V , {red,green,blue}, that violates no constraints, and so no values need to be pruned from
SA’s domain. However, for our next arc V → SA, if we set V = blue we see that SA will have no remaining
values that violate no constraints, and so we prune blue from V ’s domain.

Because we pruned a value from the domain of V , we need to enqueue all arcs with V at the head - SA→V ,
NSW → V . Since NSW → V is already in Q, we only need to add SA→ V , leaving us with our updated
queue

Q = [SA→ NSW,NSW → SA,SA→ NT,NT → SA,V → NSW,NSW →V,SA→V ]

We can continue this process until we eventually remove the arc SA→ NT from Q. Enforcing arc consis-
tency on this arc removes blue from SA’s domain, leaving it empty and triggering a backtrack. Note that the
arc NSW → SA appears before SA→ NT in Q and that enforcing consistency on this arc removes blue from
the domain of NSW .

Arc consistency is typically implemented with the AC-3 algorithm (Arc Consistency Algorithm #3), for
which the pseudocode is as follows:

CS 188, Fall 2018, Note 2 6



The AC-3 algorithm has a worst case time complexity of O(ed3), where e is the number of arcs (directed
edges) and d is the size of the largest domain. Overall, arc consistency is more holistic of a domain pruning
technique than forward checking and leads to fewer backtracks, but requires running significantly more
computation in order to enforce. Accordingly, it’s important to take into account this tradeoff when deciding
which filtering technique to implement for the CSP you’re attempting to solve.

As an interesting parting note about consistency, arc consistency is a subset of a more generalized notion
of consistency known as k-consistency, which when enforced guarantees that for any set of k nodes in the
CSP, a consistent assignment to any subset of k− 1 nodes guarantees that the kth node will have at least
one consistent value. This idea can be further extended through the idea of strong k-consistency. A graph
that is strong k-consistent possesses the property that any subset of k nodes is not only k-consistent but
also k− 1,k− 2, . . . ,1 consistent as well. Not surprisingly, imposing a higher degree of consistency on a
CSP is more expensive to compute. Under this generalized definition for consistency, we can see that arc
consistency is equivalent to 2-consistency.

Ordering
We’ve delineated that when solving a CSP, we fix some ordering for both the variables and values involved.
In practice, it’s often much more effective to compute the next variable and corresponding value "on the fly"
with two broad principles, minimum remaining values and least constraining value:

• Minimum Remaining Values (MRV) - When selecting which variable to assign next, using an MRV
policy chooses whichever unassigned variable has the fewest valid remaining values (the most con-
strained variable). This is intuitive in the sense that the most constrained variable is most likely to run
out of possible values and result in backtracking if left unassigned, and so it’s best to assign a value to
it sooner than later.

• Least Constraining Value (LCV) - Similarly, when selecting which value to assign next, a good policy
to implement is to select the value that prunes the fewest values from the domains of the remain-
ing unassigned values. Notably, this requires additional computation (e.g. rerunning arc consis-
tency/forward checking or other filtering methods for each value to find the LCV), but can still yield
speed gains depending on usage.

CS 188, Fall 2018, Note 2 7



Structure
A final class of improvements to solving constraint satisfaction problems are those that exploit their struc-
ture. In particular, if we’re trying to solve a tree-structured CSP (one that has no loops in its constraint
graph), we can reduce the runtime for finding a solution from O(dN) all the way to O(nd2), linear in the
number of variables. This can be done with the tree-structured CSP algorithm, outlined below:

• First, pick an arbitrary node in the constraint graph for the CSP to serve as the root of the tree (it
doesn’t matter which one because basic graph theory tells us any node of a tree can serve as a root).

• Convert all undirected edges in the tree to directed edges that point away from the root. Then linearize
(or topologically sort) the resulting directed acyclic graph. In simple terms, this just means order the
nodes of the graph such that all edges point rightwards. Noting that we select node A to be our root
and direct all edges to point away from A, this process results in the following conversion for the CSP
presented below:

• Perform a backwards pass of arc consistency. Iterating from i = n down to i = 2, enforce arc con-
sistency for all arcs Parent(Xi) −→ Xi. For the linearized CSP from above, this domain pruning will
eliminate a few values, leaving us with the following:

• Finally, perform a forward assignment. Starting from X1 and going to Xn, assign each Xi a value
consistent with that of its parent. Because we’ve enforced arc consistency on all of these arcs, no
matter what value we select for any node, we know that its children will each all have at least one
consistent value. Hence, this iterative assignment guarantees a correct solution, a fact which can be
proven inductively without difficulty.

The tree structured algorithm can be extended to CSPs that are reasonably close to being tree-structured
with cutset conditioning. Cutset conditioning involves first finding the smallest subset of variables in a
constraint graph such that their removal results in a tree (such a subset is known as a cutset for the graph).
For example, in our map coloring example, South Australia (SA) is the smallest possible cutset:

CS 188, Fall 2018, Note 2 8



Once the smallest cutset is found, we assign all variables in it and prune the domains of all neighboring
nodes. What’s left is a tree-structured CSP, upon which we can solve with the tree-structured CSP algorithm
from above! The initial assignment to a cutset of size c may leave the resulting tree-structured CSP(s) with
no valid solution after pruning, so we may still need to backrack up to dc times. Since removal of the cutset
leaves us with a tree-structured CSP with (n− c) variables, we know this can be solved (or determined
that no solution exists) in O((n− c)d2). Hence, the runtime of cutset conditioning on a general CSP is
O(dc(n− c)d2), very good for small c.

Local Search
As a final topic of interest, backtracking search is not the only algorithm that exists for solving constraint
satisfaction problems. Another widely used algorithm is local search, for which the idea is childishly
simple but remarkably useful. Local search works by iterative improvement - starting with some random
assignment to values then repeatedly selecting the variable that violates the most constraints and resetting it
to the value that violates the fewest constraints (a policy known as the min-conflicts heuristic). Under such
a policy, constraint satisfaction problems like N-queens becomes both very time efficient and space efficient
to solve. For example, in following example with 4 queens, we arrive at a solution after only 2 iterations:

In fact, local search appears to run in almost constant time and have a high probability of success not only
for N-queens with arbitrarily large N, but also for any randomly generated CSP! However, despite these
advantages, local search is both incomplete and suboptimal and so won’t necessarily converge to an optimal
solution. Additionally, there is a critical ratio around which using local search becomes extremely expensive:

CS 188, Fall 2018, Note 2 9



Summary
It’s important to remember that constraint satisfaction problems in general do not have an efficient algorithm
which solves them in polynomial time with respect to the number of variables involved. However, by using
various heuristics, we can often find solutions in an acceptable amount of time:

• Filtering - Filtering handles pruning the domains of unassigned variables ahead of time to prevent
unnecessary backtracking. The two important filtering techniques we’ve covered are forward checking
and arc consistency.

• Ordering - Ordering handles selection of which variable or value to assign next to make backtracking
as unlikely as possible. For variable selection, we learned about a MRV policy and for value selection
we learned about a LCV policy.

• Structure - If a CSP is tree-structured or close to tree-structured, we can run the tree-structured CSP
algorithm on it to derive a solution in linear time. Similarly, if a CSP is close to tree structured, we
can use cutset conditioning to transform the CSP into one or more independent tree-structured CSPs
and solve each of these separately.

CS 188, Fall 2018, Note 2 10


