
CS188 Fall 2018 Section 9: Midterm 2 Prep

1 . A Not So Random Walk
Pacman is trying to predict the position of a ghost, which he knows has the following transition graph:

A B C

p q 1

1− p 1− q

Here, 0 < p < 1 and 0 < q < 1 are arbitrary probabilities. It is known that the ghost always starts in state A. For
this problem, we consider time to begin at 0. For example, at time 0, the ghost is in A with probability 1, and at
time 1, the ghost is in A with probability p or in B with probability 1− p.

In all of the following questions, you may assume that n is large enough so that the given event occurs with non-zero
probability.

(i) Suppose p 6= q. What is the probability that the ghost is in A at time n?
For the ghost to be in A at time n, it must have stayed in A for n steps, which occurs with probability

pn.

(ii) Suppose p 6= q. What is the probability that the ghost first reaches B at time n?
For the ghost to first reach B at time n, it must have stayed in A for n− 1 steps, then transitioned to B. This
occurs with probability

f(i)(n− 1) · (1− p) = pn−1(1− p).

(iii) Suppose p 6= q. What is the probability that the ghost is in B at time n?
For the ghost to be in B at time n, it must have first reached B at time i for some 1 ≤ i ≤ n, then stayed there
for n− i steps. Summing over all values of i gives

n∑
i=1

f(ii)(i) · qn−i =

n∑
i=1

pi−1(1− p)qn−i =
(1− p)qn

p

n∑
i=1

(
p

q

)i

=
(1− p)qn

p
· p
q
·

1−
(

p
q

)n
1− p

q

= (1− p)
qn − pn

q − p
.

(iv) Suppose p 6= q. What is the probability that the ghost first reaches C at time n?
For the ghost to first reach C at time n, it must have been in B at time n − 1, then transitioned to C. This
occurs with probability

f(iii)(n− 1) · (1− q) = (1− p)
qn−1 − pn−1

q − p
(1− q).

(v) Suppose p 6= q. What is the probability that the ghost is in C at time n?
For the ghost to be in C at time n, it must not be in A or B at time n. This occurs with probability

1− f(i)(n)− f(iii)(n) = 1− pn − (1− p)
qn − pn

q − p
.
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Alternatively, for the ghost to be in C at time n, it must have first reached C at time i for some 2 ≤ i ≤ n, then
stayed there for n− i steps. Note that we can equivalently range over 1 ≤ i ≤ n for computational convenience,
since f(iv)(1) = 0. Summing over all values of i gives

n∑
i=2

f(iv)(i) · 1n−i =

n∑
i=1

f(iv)(i) · 1n−i =

n∑
i=1

(1− p)
qi−1 − pi−1

q − p
(1− q)

=
(1− p)(1− q)

q − p

(
1− qn

1− q
− 1− pn

1− p

)
=

(1− p)(1− qn)− (1− q)(1− pn)

q − p
,

which is equivalent to the previous expression.
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2 . December 21, 2012

A smell of sulphur (S) can be caused either by rotten eggs (E) or as a sign of the doom brought by the Mayan
Apocalypse (M). The Mayan Apocalypse also causes the oceans to boil (B). The Bayesian network and corresponding
conditional probability tables for this situation are shown below. For each part, you should give either a numerical
answer (e.g. 0.81) or an arithmetic expression in terms of numbers from the tables below (e.g. 0.9 · 0.9).

Note: be careful of doing unnecessary computation here.

P (E)
+e 0.4
−e 0.6

P (S|E,M)
+e +m +s 1.0
+e +m −s 0.0
+e −m +s 0.8
+e −m −s 0.2
−e +m +s 0.3
−e +m −s 0.7
−e −m +s 0.1
−e −m −s 0.9

E

S

M

B

P (M)
+m 0.1
−m 0.9

P (B|M)
+m +b 1.0
+m −b 0.0
−m +b 0.1
−m −b 0.9

(a) Compute the following entry from the joint distribution:

P (−e,−s,−m,−b) = P (−e)P (−m)P (−s| − e,−m)P (−b| −m) = (0.6)(0.9)(0.9)(0.9) = 0.4374
by expanding the joint according to the chain rule of conditional probability.

(b) What is the probability that the oceans boil?

P (+b) = P (+b|+ m)P (+m) + P (+b| −m)P (−m) = (1.0)(0.1) + (0.1)(0.9) = 0.19
by marginalizing out m according to the law of total probability.

(c) What is the probability that the Mayan Apocalypse is occurring, given that the oceans are boiling?

P (+m|+ b) = P (+b|+m)P (+m)
P (+b) = (1.0)(0.1)

0.19 ≈ .5263

by the definition of conditional probability.
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The figures and table below are identical to the ones on the previous page and are repeated here for your convenience.

P (E)
+e 0.4
−e 0.6

P (S|E,M)
+e +m +s 1.0
+e +m −s 0.0
+e −m +s 0.8
+e −m −s 0.2
−e +m +s 0.3
−e +m −s 0.7
−e −m +s 0.1
−e −m −s 0.9

E

S

M

B

P (M)
+m 0.1
−m 0.9

P (B|M)
+m +b 1.0
+m −b 0.0
−m +b 0.1
−m −b 0.9

(d) What is the probability that the Mayan Apocalypse is occurring, given that there is a smell of sulphur, the
oceans are boiling, and there are rotten eggs?

P (+m|+ s,+b,+e) =

P (+m,+s,+b,+e)∑
m P (m,+s,+b,+e)

=
P (+e)P (+m)P (+s|+ e,+m)P (+b|+ m))∑

m P (+e)P (m)P (+s|+ e,m)P (+b|m)

=
(0.4)(0.1)(1.0)(1.0)

(0.4)(0.1)(1.0)(1.0) + (0.4)(0.9)(0.8)(0.1)

=
0.04

0.04 + 0.0288
≈ .5814

(e) What is the probability that rotten eggs are present, given that the Mayan Apocalypse is occurring?

P (+e|+m) = P (+e) = 0.4
The first equality holds true as we have E ⊥⊥ M (E is independent of M), which can be inferred from the graph of
the Bayes’ net.
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3 . Argg! Sampling for the Legendary Treasure
Little did you know that Jasmine and Katie are actually infamous pirates. One day, they go treasure hunting in the
Ocean of Bayes, where rumor says a great treasure lies in wait for explorers who dare navigate in the rough waters.
After navigating about the ocean, they are within grasp of the treasure. Their current configuration is represented
by the boat in the figure below. They can only make one move, and must choose from the actions: (North, South,
East, West). Stopping is not allowed. They will land in either a whirlpool (W), an island with a small treasure (S),
or an island with the legendary treasure (T). The utilities of the three types of locations are shown below:

State U(State)

T (Legendary Treasure) 100

S (Small Treasure) 25

W (Whirlpool) -50

The success of their action depends on the random variable Movement (M), which takes on one of two values:
(+m, -m). The Movement random variable has many relationships with other variables: Presence of Enemy Pirates
(E), Rain (R), Strong Waves (W), and Presence of Fishermen (F). The Bayes’ net graph that represents these
relationships is shown below:

R

E W

M F

R P(R)
+r 0.4
-r 0.6

E R P(E | R)
+e +r 0.3
-e +r 0.7
+e -r 0.6
-e -r 0.4

W R P(W | R)
+w +r 0.9
-w +r 0.1
+w -r 0.2
-w -r 0.8

F W P(F | W)
+f +w 0.15
-f +w 0.85
+f -w 0.75
-f -w 0.25

M E W P(M | E,W)
+m +e +w 0.1
-m +e +w 0.9
+m +e -w 0.45
-m +e -w 0.55
+m -e +w 0.35
-m -e +w 0.65
+m -e -w 0.9
-m -e -w 0.1

In the following questions we will follow a two-step process:
– (1) Jasmine and Katie observed the random variables R = −r and F = +f . We then determine the distribution
for P (M | − r,+f) via sampling.

– (2) Based on the estimate for P (M | − r,+f), after committing to an action, landing in the intended location
of an action successfully occurs with probability P (M = +m| − r,+f). The other three possible landing positions

occur with probability P (M=−m|−r,+f)
3 each. Use this transition distribution to calculate the optimal action(s) to

take and the expected utility of those actions.
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(a) (i) Rejection Sampling: You want to estimate P (M = +m| − r,+f) by rejection sampling. Below is a list
of samples that were generated using prior sampling. Cross out those that would be rejected by rejection
sampling.

+r + e + w −m − f
−r − e + w −m − f
−r + e − w −m + f
+r − e − w + m − f
−r − e − w −m + f
−r + e − w −m + f

−r − e + w −m + f
+r − e + w + m − f
−r − e − w + m + f
+r − e − w + m + f
−r + e + w −m + f
−r + e − w −m + f

All samples without the conditioning −r,+f are rejected.

(ii) What is the approximation for P (M = +m| − r,+f) using the remaining samples?
1
7 , the fraction of accepted samples with +m instantiated.

(iii) What are the optimal action(s) for Jasmine and Katie based on this estimate of P (M = +m| − r,+f)?
South, West. As p(+m| − r,+f) = 1

7 , p(−m| − r,+f) = 6
7 . Jasmine and Katie will succeed in the

selected action 1
7 of the time, or take one of the other 3 actions with equal probability of 2

7 . In this case,
p(+m| − r,+f) is so low that deciding to head in the direction of the whirlpool actually decreases the
chances of landing in it.

(iv) What is the expected utility for the optimal action(s) based on this estimate of P (M = +m| − r,+f)?
1
7 ∗ (−50) + 2

7 ∗ (−50) + 2
7 ∗ (25) + 2

7 ∗ (100) = 100
7 , the weighted sum of all four outcomes.

(b) (i) Likelihood Weighting: Suppose instead that you perform likelihood weighting on the following samples
to get the estimate for P (M = +m| − r,+f). You receive 4 samples consistent with the evidence.

Sample Weight

−r − e + w + m + f P (−r)P (+f |+ w) = 0.6 ∗ 0.15 = 0.09

−r − e − w + m + f P (−r)P (+f | − w) = 0.6 ∗ 0.75 = 0.45

−r − e + w −m + f P (−r)P (+f |+ w) = 0.6 ∗ 0.15 = 0.09

−r + e − w −m + f P (−r)P (+f | − w) = 0.6 ∗ 0.75 = 0.45

(ii) What is the approximation for P (M = +m| − r,+f) using the samples above?
0.09+0.45

0.09+0.45+0.09+0.45 = 1
2

(iii) What are the optimal action(s) for Jasmine and Katie based on this estimate of P (M = +m| − r,+f)?
East

(iv) What is the expected utility for the optimal action(s) based on this estimate of P (M = +m| − r,+f)?
1
6 ∗ (−50) + 1

6 ∗ (−50) + 1
6 ∗ (25) + 1

2 ∗ (100) = 75
2
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Here is a copy of the Bayes’ Net, repeated for your convenience.

R

E W

M F

R P(R)
+r 0.4
-r 0.6

E R P(E | R)
+e +r 0.3
-e +r 0.7
+e -r 0.6
-e -r 0.4

W R P(W | R)
+w +r 0.9
-w +r 0.1
+w -r 0.2
-w -r 0.8

F W P(F | W)
+f +w 0.15
-f +w 0.85
+f -w 0.75
-f -w 0.25

M E W P(M | E,W)
+m +e +w 0.1
-m +e +w 0.9
+m +e -w 0.45
-m +e -w 0.55
+m -e +w 0.35
-m -e +w 0.65
+m -e -w 0.9
-m -e -w 0.1

(c) (i) Gibbs Sampling. Now, we tackle the same problem, this time using Gibbs sampling. We start out with
initializing our evidence: R = −r , F = +f . Furthermore, we start with this random sample:

−r + e − w + m + f .

We select variable E to resample. Calculate the numerical value for:
P (E = +e|R = −r,W = −w,M = +m,F = +f).

P (E = +e|R = −r,W = −w,M = +m,F = +f) = P (+e|−r)P (+m|+e,−w)
P (+e|−r)P (+m|+e,−w)+P (−e|−r)P (+m|−e,−w)

= 0.6∗0.45
0.6∗0.45+0.4∗0.9 = 3

7

We resample for a long time until we end up with the sample:

−r − e + w + m + f .

Jasmine and Katie are happy for fixing this one sample, but they do not have enough time left to com-
pute another sample before making a move. They will let this one sample approximate the distribution:
P (M = +m| − r,+f).

(ii) What is the approximation for P (M = +m| − r,+f), using this one sample?
1

(iii) What are the optimal action(s) for Jasmine and Katie based on this estimate of P (M = +m| − r,+f)?
East

(iv) What is the expected utility for the optimal action(s) based on this estimate of P (M = +m| − r,+f)?
100
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4 . Probability and Decision Networks
The new Josh Bond Movie (M), Skyrise, is premiering later this week. Skyrise will either be great (+m) or horrendous
(−m); there are no other possible outcomes for its quality. Since you are going to watch the movie no matter what,
your primary choice is between going to the theater (theater) or renting (rent) the movie later. Your utility of
enjoyment is only affected by these two variables as shown below:

M P(M)
+m 0.5
-m 0.5

M A U(M,A)
+m theater 100
-m theater 10

+m rent 80
-m rent 40

(a) Maximum Expected Utility

Compute the following quantities:

EU(theater) = P (+m)U(+m, theater) + P (−m)U(−m, theater) = 0.5 ∗ 100 + 0.5 ∗ 10 = 55

EU(rent) = P (+m)U(+m, rent) + P (−m)U(−m, rent) = 0.5 ∗ 80 + 0.5 ∗ 40 = 60

MEU({}) = 60

Which action achieves MEU({}) = rent
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(b) Fish and Chips

Skyrise is being released two weeks earlier in the U.K. than the U.S., which gives you the perfect opportunity
to predict the movie’s quality. Unfortunately, you don’t have access to many sources of information in the
U.K., so a little creativity is in order.

You realize that a reasonable assumption to make is that if the movie (M) is great, citizens in the U.K. will
celebrate by eating fish and chips (F ). Unfortunately the consumption of fish and chips is also affected by a
possible food shortage (S), as denoted in the below diagram.

The consumption of fish and chips (F ) and the food shortage (S) are both binary variables. The relevant
conditional probability tables are listed below:

S M F P (F |S,M)
+s +m +f 0.6
+s +m -f 0.4
+s -m +f 0.0
+s -m -f 1.0

S M F P (F |S,M)
-s +m +f 1.0
-s +m -f 0.0
-s -m +f 0.3
-s -m -f 0.7

S P (S)
+s 0.2
-s 0.8

You are interested in the value of revealing the food shortage node (S). Answer the following queries:

EU(theater|+ s) =

The shortage variable is independent of the parents of the utility node when no additional evidence is present;
thus, the same values hold:

EU(theater|+ s) = EU(theater) = 55

EU(rent|+ s) = EU(rent) = 60

MEU({+s}) = 60

Optimal Action Under {+s} = r (Rent)

MEU({−s}) = 60

Optimal Action Under {−s} = r (Rent)

V PI(S) = 0, since the Value of Perfect Information is the expected difference in MEU given the evidence vs.
without the evidence and here the evidence is uninformative.
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5 . HMM: Human-Robot Interaction
In the near future, autonomous robots would live among us. Therefore, it is important for the robots to know how
to properly act in the presence of humans. In this question, we are exploring a simplified model of this interaction.
Here, we are assuming that we can observe the robot’s actions at time t, Rt, and an evidence observation, Et, directly
caused by the human action, Ht. Humans actions and Robots actions from the past time-step affect the Human’s and
Robot’s actions in the next time-step. In this problem, we will remain consistent with the convention that capital
letters (Ht) refer to random variables and lowercase letters (ht) refer to a particular value the random variable can
take. The structure is given below:

. . . Ht−1 Ht Ht+1 . . .

. . .

. . . Rt−1 Rt Rt+1 . . .

Et−1 Et Et+1 . . .

You are supplied with the following probability tables: P (Rt | Et), P (Ht | Ht−1, Rt−1), P (H0), P (Et | Ht).

Let us derive the forward algorithm for this model. We will split our computation into two components, a time-
elapse update expression and a observe update expression.

(a) We would like to incorporate the evidence that we observe at time t. Using the time-lapse update expression
we will derive separately, we would like to find the observe update expression:

O(Ht) = P (Ht|e0:t, r0:t)

In other words, we would like to compute the distribution of potential human states at time t given all
observations up to and including time t. In addition to the conditional probability tables associated with the
network’s nodes, we are given T (Ht) = P (Ht | e0:t−1, r0:t−1), which we will assume is correctly computed in
the time-elapse update that we will derive in the next part. From the options below, select all the options that
both make valid independence assumptions and would evaluate to the observe update expression.

� P (Ht|e0:t−1,r0:t−1)P (et|Ht)P (rt|et)∑
ht

P (ht|e0:t−1,r0:t−1)P (et|ht)P (rt|et)

� P (Ht|e0:t−1,r0:t−1)P (et|Ht)∑
ht

P (ht|e0:t−1,r0:t−1)P (et|ht)

�
∑

et
P (Ht|e0:t−1,r0:t−1)P (et|Ht)∑

ht
P (ht|e0:t−1,r0:t−1)P (et|rt−1,Ht−1)

� ∑
rt−1

P (Ht | e0:t−1, r0:t−1)P (rt−1 | et−1)

� ∑
rt
P (Ht | e0:t−1, r0:t−1)P (rt | rt−1, et)

� ∑
ht+1

P (Ht | e0:t−1, r0:t−1)P (ht+1 | rt)

P (Ht|e0:t, r0:t) =
P (Ht, e0:t, e0:t)∑
ht

P (ht, e0:t, e0:t)
=

P (Ht | e0:t−1, r0:t−1)P (et | Ht)P (rt | et)
P (rt | et)

∑
ht

P (ht | e0:t−1, r0:t−1)P (et | ht)
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The structure below is identical to the one in the beginning of the question and is repeated for your convenience.

. . . Ht−1 Ht Ht+1 . . .

. . .

. . . Rt−1 Rt Rt+1 . . .

Et−1 Et Et+1 . . .

(b) We are interested in predicting what the state of human is at time t (Ht), given all the observations through
t− 1. Therefore, the time-elapse update expression has the following form:

T (Ht) = P (Ht|e0:t−1, r0:t−1)

Derive an expression for the given time-elapse update above using the probability tables provided in the question
and the observe update expression, O(Ht−1) = P (Ht−1|e0:t−1, r0:t−1). Write your final expression in the space
provided at below. You may use the function O in your solution if you prefer.

The derivation of the time-elapse update for this setup is similar to the one we have seen in lecture; however,
here, we have additional observations and dependencies.

P (Ht|e0:t−1, r0:t−1) =
∑
ht−1

P (Ht, ht−1 | e0:t−1, r0:t−1)

=
∑
ht−1

P (Ht | ht−1, rt−1)P (ht−1 | e0:t−1, r0:t−1)

P (Ht|e0:t−1, r0:t−1) =
∑

ht−1
P (Ht | ht−1, rt−1)P (ht−1 | e0:t−1, r0:t−1)
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6 . Näıve Bayes Modeling Assumptions
You are given points from 2 classes, shown as rectangles and dots. For each of the following sets of points, mark
if they satisfy all the Näıve Bayes modelling assumptions, or they do not satisfy all the Näıve Bayes modelling
assumptions. Note that in (c), 4 rectangles overlap with 4 dots.

The conditional independence assumptions made by the Näıve Bayes model are that features are conditionally
independent when given the class. Features being independent once the class label is known means that for a fixed
class the distribution for f1 cannot depend on f2, and the other way around. Concretely, for discrete-valued features
as shown below, this means each class needs to have a distribution that corresponds to an axis-aligned rectangle. No
other assumption is made by the Näıve Bayes model. Note that linear separability is not an assumption of the Näıve
Bayes model—what is true is that for a Näıve Bayes model with all binary variables the decision boundary between
the two classes is a hyperplane (i.e., it’s a linear classifier). That, however, wasn’t relevant to the question as the
question examined which probability distribution a Näıve Bayes model can represent, not which decision boundaries.
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A note about feature independence: The Näıve Bayes model assumes features are conditionally independent given the
class. Why does this result in axis-aligned rectangles for discrete feature distributions? Intuitively, this is because
fixing one value is uninformative about the other: within a class, the values of one feature are constant across the
other. For instance, the dark square class in (b) has f1 ∈ [−0.5, 0.5] and f2 ∈ [−1, 0] and fixing one has no impact
on the domain of the other. However, when the features of a class are not axis-aligned then fixing one limits the
domain of the other, inducing dependence. In (e), fixing f2 = 1.5 restricts f1 to the two points at the top, whereas
fixing f2 = 0 gives a larger domain.
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