CS188 Fall 2018 Section 9: Machine Learning

1 Naive Bayes

In this question, we will train a Naive Bayes classifier to predict class labels Y as a function of input features A and $B . Y, A$, and B are all binary variables, with domains 0 and 1 . We are given 10 training points from which we will estimate our distribution.

A	1	1	1	1	0	1	0	1	1	1
B	1	0	0	1	1	1	1	0	1	1
Y	1	1	0	0	0	1	1	0	0	0

1. What are the maximum likelihood estimates for the tables $P(Y), P(A \mid Y)$, and $P(B \mid Y)$?

Y	$P(Y)$
0	$3 / 5$
1	$2 / 5$

A	Y	$P(A \mid Y)$
0	0	$1 / 6$
1	0	$5 / 6$
0	1	$1 / 4$
1	1	$3 / 4$

B	Y	$P(B \mid Y)$
0	0	$1 / 3$
1	0	$2 / 3$
0	1	$1 / 4$
1	1	$3 / 4$

2. Consider a new data point $(A=1, B=1)$. What label would this classifier assign to this sample?

$$
\begin{align*}
P(Y=0, A=1, B=1) & =P(Y=0) P(A=1 \mid Y=0) P(B=1 \mid Y=0) \tag{1}\\
& =(3 / 5)(5 / 6)(2 / 3) \tag{2}\\
& =1 / 3 \tag{3}\\
P(Y=1, A=1, B=1) & =P(Y=1) P(A=1 \mid Y=1) P(B=1 \mid Y=1) \tag{4}\\
& =(2 / 5)(3 / 4)(3 / 4) \tag{5}\\
& =9 / 40 \tag{6}
\end{align*}
$$

Our classifier will predict label 0 .
3. Let's use Laplace Smoothing to smooth out our distribution. Compute the new distribution for $P(A \mid Y)$ given Laplace Smoothing with $k=2$.

A	Y	$P(A \mid Y)$
0	0	$3 / 10$
1	0	$7 / 10$
0	1	$3 / 8$
1	1	$5 / 8$

2 Perceptron

You want to predict if movies will be profitable based on their screenplays. You hire two critics A and B to read a script you have and rate it on a scale of 1 to 4 . The critics are not perfect; here are five data points including the critics' scores and the performance of the movie:

$\#$	Movie Name	A	B	Profit?
1	Pellet Power	1	1	-
2	Ghosts!	3	2	+
3	Pac is Bac	2	4	+
4	Not a Pizza	3	4	+
5	Endless Maze	2	3	-

1. First, you would like to examine the linear separability of the data. Plot the data on the 2D plane above; label profitable movies with + and non-profitable movies with - and determine if the data are linearly separable. The data are linearly separable.
2. Now you decide to use a perceptron to classify your data. Suppose you directly use the scores given above as features, together with a bias feature. That is $f_{0}=1, f_{1}=$ score given by A and $f_{2}=$ score given by B.

Run one pass through the data with the perceptron algorithm, filling out the table below. Go through the data points in order, e.g. using data point \#1 at step 1.

step	Weights	Score	Correct?
1	$[-1,0,0]$	$-1 \cdot 1+0 \cdot 1+0 \cdot 1=-1$	yes
2	$[-1,0,0]$	$-1 \cdot 1+0 \cdot 3+0 \cdot 2=-1$	no
3	$[0,3,2]$	$0 \cdot 1+3 \cdot 2+2 \cdot 4=14$	yes
4	$[0,3,2]$	$0 \cdot 1+3 \cdot 3+2 \cdot 4=17$	yes
5	$[0,3,2]$	$0 \cdot 1+3 \cdot 2+2 \cdot 3=12$	no

Final weights: $[-1,1,-1]$
3. Have weights been learned that separate the data? With the current weights, points will be classified as positive if $-1 \cdot 1+1 \cdot A+-1 \cdot B \geq 0$, or $A-B \geq 1$. So we will have incorrect predictions for data points 3 :

$$
-1 \cdot 1+1 \cdot 2+-1 \cdot 4=-3<0
$$

and 4:

$$
-1 \cdot 1+1 \cdot 3+-1 \cdot 4=-2<0
$$

Note that although point 2 has $w \cdot f=0$, it will be classified as positive (since we classify as positive if $w \cdot f \geq 0$).
4. More generally, irrespective of the training data, you want to know if your features are powerful enough to allow you to handle a range of scenarios. Circle the scenarios for which a perceptron using the features above can indeed perfectly classify movies which are profitable according to the given rules:
(a) Your reviewers are awesome: if the total of their scores is more than 8 , then the movie will definitely be profitable, and otherwise it won't be. Can classify (consider weights $[-8,1,1]$)
(b) Your reviewers are art critics. Your movie will be profitable if and only if each reviewer gives either a score of 2 or a score of 3 . Cannot classify
(c) Your reviewers have weird but different tastes. Your movie will be profitable if and only if both reviewers agree. Cannot classify

3 Maximum Likelihood

A Geometric distribution is a probability distribution of the number X of Bernoulli trials needed to get one success. It depends on a parameter p, which is the probability of success for each individual Bernoulli trial. Think of it as the number of times you must flip a coin before flipping heads. The probability is given as follows:

$$
\begin{equation*}
P(X=k)=p(1-p)^{k-1} \tag{8}
\end{equation*}
$$

p is the parameter we wish to estimate.
We observe the following samples from a Geometric distribution: $x_{1}=5, x_{2}=8, x_{3}=3, x_{4}=5, x_{5}=7$. What is the maximum likelihood estimate for p ?

$$
\begin{align*}
L(p) & =P\left(X=x_{1}\right) P\left(X=x_{2}\right) P\left(X=x_{3}\right) P\left(X=x_{4}\right) P\left(X=x_{5}\right) \tag{9}\\
& =P(X=5) P(X=8) P(X=3) P(X=5) P(X=7) \tag{10}\\
& =p^{5}(1-p)^{23} \tag{11}\\
\log (L(p)) & =5 \log (p)+23 \log (1-p) \tag{12}
\end{align*}
$$

We must maximize the log-likelihood of p, so we will take the derivative, and set it to 0 .

$$
\begin{align*}
& 0=\frac{5}{p}-\frac{23}{1-p} \tag{14}\\
& p=5 / 28 \tag{15}
\end{align*}
$$

