CS 188: Artificial Intelligence Introduction

Pieter Abbeel & Dan Klein University of California, Berkeley

Course Staff

Professors

GSIs

Jonathan Ho

Katie Luo

Laura Smith Mitchell Stern Nikhil Sharma

Noah Golmant Ronghang Hu Thanard Kurutach Wilson Yu

Course Information

http://inst.cs.berkeley.edu/~cs188

Communication:

- Announcements on Piazza
- Questions? Discussion on Piazza
- Staff email: cs188@berkeley.edu

Course technology:

- Website
- Piazza
- Gradescope
- This course is webcast (= Fa18 videos)
 - + edited videos from past semester

Course Information

Prerequisites:

- (CS 61A or CS 61B) and (CS 70 or Math 55)
 - Recommended: CS 61A and CS 61B and CS 70
- There will be a lot of math (and programming)

Work and Grading:

- 5 programming projects: Python, groups of 1 or 2
 - 5 late days for semester, maximum 2 per project
- 11 homework assignments:
 - Electronic component: Online, interactive, solve alone/together, submit alone
 - Written component: On paper, solve alone/together, submit alone, self-asses
- Two midterms, One final
- Fixed scale
- Participation can help on margins
- Academic integrity policy
- Contests!

Exam Dates

- Midterm 1: October 9th, 7:30-9:30pm
- Midterm 2: November 15th, 7:30-9:30pm
- Final Exam: December 11th, 8-11am
- There will be no alternate exams

Discussion Section (Optional Attendance)

- Topic: review / warm-up exercises
- Currently, none of you are assigned to sections
- You are welcome to attend any section of your preference
- Piazza survey later this week to help keep sections balanced
- From past semesters' experience we know sections will be (over)crowded the first two weeks of section, but then onwards section attendance will be lower and things will sort themselves out
- There will be a webcast of section
- There is no section in the current week (8/20-8/24).

Textbook

- Not required, but for students who want to read more we recommend
 - Russell & Norvig, AI: A Modern Approach, 3rd Ed.

 Warning: Not a course textbook, so our presentation does not necessarily follow the presentation in the book.

Laptops in Lecture

Laptops can easily distract students behind you
 Please consider sitting towards the back if using your laptop in lecture

Announcements This Week

- Important this week:
 - Check out website: https://inst.eecs.berkeley.edu/~cs188/fa18
 - Register on Gradescope and Piazza (check your email for links)
 - HW0: Math self-diagnostic is online now (due on Monday 8/27 at 11:59pm)
 - P0: Python tutorial is online now (due on Monday 8/27 at 11:59pm)
 - One-time (optional) P0 lab hours (Friday 3-6pm, 330 Soda Hall)
 - Inst accounts: not needed, but if you want one, check instructions on Piazza
- Also important:
 - Sections will be loosely assigned via Piazza poll (check the cs188 Piazza page)
 - Sections start next week. You may go to any section that has space.
 - The waitlist might take a while to sort out. We don't control enrollment. Please see https://eecs.berkeley.edu/resources/undergrads/cs/degree-reqs/enrollment-policy for information regarding enrollment into CS classes, including email contact for staff if you have additional enrollment-related questions.

Instruction vs. Assessment

Grow knowledge, collaborate, work until success

Assessment

Measure knowledge, each student on their own, stopped before success

Our experience: these two goals don't mix

- Lecture / Section / OH / Piazza / Homework / Projects are instruction
 - collaborative, work until success (but please no spoilers)
- Exams are assessment
 - on your own

Some Historical Statistics

Homework and projects: work alone/together, iterate/learn till you nailed it

Exams: assessment

- New this year: written component to homework (= old exam questions)
- Suggestion: assess yourself by first spending some time working alone

Today

- What is artificial intelligence?
- What can AI do?
- What is this course?

Sci-Fi AI?

News AI?

What is AI?

The science of making machines that:

Rational Decisions

We'll use the term rational in a very specific, technical way:

- Rational: maximally achieving pre-defined goals
- Rationality only concerns what decisions are made (not the thought process behind them)
- Goals are expressed in terms of the **utility** of outcomes
- Being rational means maximizing your expected utility

A better title for this course would be:

Computational Rationality

Maximize Your Expected Utility

What About the Brain?

- Brains (human minds) are very good at making rational decisions, but not perfect
- Brains aren't as modular as software, so hard to reverse engineer!
- "Brains are to intelligence as wings are to flight"
- Lessons learned from the brain: memory (data) and simulation (computation) are key to decision making

Course Topics

- Part I: Intelligence from Computation
 - Fast search / planning
 - Constraint satisfaction
 - Adversarial and uncertain search
- Part II: Intelligence from Data
 - Bayes' nets
 - Decision theory
 - Machine learning
- Throughout: Applications
 - Natural language, vision, robotics, games, ...

A (Short) History of Al

A (Short) History of Al

- 1940-1950: Early days
 - 1943: McCulloch & Pitts: Boolean circuit model of brain
 - 1950: Turing's "Computing Machinery and Intelligence"
- 1950—70: Excitement: Look, Ma, no hands!
 - 1950s: Early Al programs, including Samuel's checkers program, Newell & Simon's Logic Theorist, Gelernter's Geometry Engine
 - 1956: Dartmouth meeting: "Artificial Intelligence" adopted
 - 1965: Robinson's complete algorithm for logical reasoning
- 1970—90: Knowledge-based approaches
 - 1969—79: Early development of knowledge-based systems
 - 1980—88: Expert systems industry booms
 - 1988—93: Expert systems industry busts: "Al Winter"
- 1990— 2012: Statistical approaches + subfield expertise
 - Resurgence of probability, focus on uncertainty
 - General increase in technical depth
 - Agents and learning systems... "AI Spring"?
- 2012— ___: Excitement: Look, Ma, no hands again?
 - Big data, big compute, neural networks
 - Some re-unification of sub-fields
 - Al used in many industries

What Can AI Do?

Quiz: Which of the following can be done at present?

- ✓ Play a decent game of table tennis?
- ✓ Play a decent game of Jeopardy?
- ✓ Drive safely along a curving mountain road?
- Prive safely along Telegraph Avenue?
- ✓ Buy a week's worth of groceries on the web?
- X Buy a week's worth of groceries at Berkeley Bowl?
- P Discover and prove a new mathematical theorem?
- X Converse successfully with another person for an hour?
- Perform a surgical operation?
- ▼ Translate spoken Chinese into spoken English in real time?
- Fold the laundry and put away the dishes?
- **X** Write an intentionally funny story?

Unintentionally Funny Stories

[Shank, Tale-Spin System, 1984]

Natural Language

- Speech technologies (e.g. Siri)
 Automatic speech recognition (ASR)
 Text-to-speech synthesis (TTS)

 - Dialog systems

Natural Language

- Speech technologies
 - Automatic speech recognition (ASR)
 - Text-to-speech synthesis (TTS)
 - Dialog systems
- Language processing technologies
 - Question answering
 - Machine translation

- Web search
- Text classification, spam filtering, etc...

Vision (Perception)

PIXELS -> INFO/DECISION

E.g.:

Face detection and recognition

Source: TechCrunch

Semantic Scene Segmentation

[Caesar et al, ECCV 2017]

3-D Understanding

[DensePose]

Robotics

- Robotics
 - Part mech. eng.
 - Part Al
 - Reality much harder than simulations!
- Technologies
 Vehicles

 - Rescue
 - Soccer!
 - Lots of automation...
- In this class:
 - We ignore mechanical aspects
 - Methods for planning
 - Methods for control

Images from UC Berkeley, RoboCup, Google/Waymo, Boston Dynamics

Game Playing

- Classic Moment: May, '97: Deep Blue vs. Kasparov
 - First match won against world champion
 - "Intelligent creative" play
 - 200 million board positions per second
 - Humans understood 99.9 of Deep Blue's moves
 - Can do about the same now with commodity parts
 - 1996: Kasparov beats Deep Blue: "I could feel --- I could smell --- a new kind of intelligence across the table."
 - 1997: Deep Blue beats Kasparaov: "Deep Blue hasn't proven anything."

- How does human cognition deal with the search space explosion of chess?
- Or: how can humans compete with computers at all??
- 2016: AlphaGo beats Lee Sedol huge advance: sparse rollouts and self-play
- Right now: OpenAl Five vs Team paiN (human pros) -- some caveats!
 - "[The AI play] was just something like completely different." Austin Walsh

Text from Bart Selman, image from IBM's Deep Blue pages

Logic

- Logical systems
 - Theorem provers
 - NASA fault diagnosis
 - Question answering

Methods:

- Deduction systems
- Constraint satisfaction
- Satisfiability solvers (huge advances!)

Al is starting to be everywhere...

- Applied AI automates all kinds of things
 - Search engines
 - Route planning, e.g. maps, traffic
 - Logistics, e.g. packages, inventory
 - Medical diagnosis
 - Automated help desks
 - Spam / fraud detection
 - Smarter devices, e.g. cameras
 - Product recommendations
 - ... Lots more!

Designing Rational Agents

- An agent is an entity that perceives and acts.
- A rational agent selects actions that maximize its (expected) utility.
- Characteristics of the percepts, environment, and action space dictate techniques for selecting rational actions
- This course is about:
 - General AI techniques for a variety of problem types
 - Learning to recognize when and how a new problem can be solved with an existing technique

Pac-Man as an Agent

Pac-Man is a registered trademark of Namco-Bandai Games, used here for educational purposes