Reinforcement Learning

Basic idea:
- Receive feedback in the form of rewards
- Agent’s utility is defined by the reward function
- Must (learn to) act so as to maximize expected rewards
- All learning is based on observed samples of outcomes!

Example: Learning to Walk

[Initial] [A Learning Trial] [After Learning [1K Trials]]

[Kohl and Stone, ICRA 2004]
Example: Learning to Walk

Initial

[Video: AIBO WALK – initial]

[Video: AIBO WALK – finished]

[Video: AIBO WALK – training]

Training

[Video: AIBO WALK – initial]

[Video: AIBO WALK – finished]

[Video: AIBO WALK – training]

Example: Sidewinding

[Video: SNAKE – climbStep+sidewinding]

[Video: SNAKE – done]

[Video: SNAKE – walking]

[Kohl and Stone, ICRA 2004]

[Andrew Ng]
Example: Toddler Robot

The Crawler!

Video of Demo Crawler Bot

Reinforcement Learning

- Still assume a Markov decision process (MDP):
  - A set of states $s \in S$
  - A set of actions (per state) $A$
  - A model $T(s,a,s')$
  - A reward function $R(s,a,s')$
- Still looking for a policy $\pi(s)$

- New twist: don’t know $T$ or $R$
  - I.e. we don’t know which states are good or what the actions do
  - Must actually try out actions and states to learn
Offline (MDPs) vs. Online (RL)

Offline Solution

Online Learning

Model-Based Learning

Model-Based Idea:
- Learn an approximate model based on experiences
- Solve for values as if the learned model were correct

Step 1: Learn empirical MDP model
- Count outcomes \( s' \) for each \( s, a \)
- Normalize to give an estimate of \( \hat{T}(s, a, s') \)
- Discover each \( \hat{R}(s, a, s') \) when we experience \( (s, a, s') \)

Step 2: Solve the learned MDP
- For example, use value iteration, as before

Example: Model-Based Learning

Input Policy \( \pi \)

Observed Episodes (Training)

\begin{align*}
\text{Episode 1} & : \quad B, \text{east}, C, -1 \\
& \quad C, \text{east}, D, -1 \\
& \quad D, \text{exit}, x, +10
\end{align*}

\begin{align*}
\text{Episode 2} & : \quad B, \text{east}, C, -1 \\
& \quad C, \text{east}, D, -1 \\
& \quad D, \text{exit}, x, +10
\end{align*}

\begin{align*}
\text{Episode 3} & : \quad E, \text{north}, C, -1 \\
& \quad C, \text{east}, D, -1 \\
& \quad D, \text{exit}, x, +10
\end{align*}

\begin{align*}
\text{Episode 4} & : \quad E, \text{north}, C, -1 \\
& \quad C, \text{east}, A, -1 \\
& \quad A, \text{exit}, x, -10
\end{align*}

Learned Model

\begin{align*}
\hat{T}(s, a, s') & \\
\hat{T}(B, \text{east}, C) & = 1.00 \\
\hat{T}(C, \text{east}, D) & = 0.75 \\
\hat{T}(C, \text{east}, A) & = 0.25 \\
\hat{R}(s, a, s') & \\
\hat{R}(B, \text{east}, C) & = -1 \\
\hat{R}(C, \text{east}, D) & = -1 \\
\hat{R}(D, \text{exit}, x) & = +10
\end{align*}

Assume: \( \gamma = 1 \)
Example: Expected Age

Goal: Compute expected age of cs188 students

**Known P(A)**

\[ E[A] = \sum_a p(a) \cdot a = 0.35 \times 20 + \ldots \]

**Unknown P(A): “Model Based”**

\[ \hat{P}(a) = \frac{\text{sum}(a)}{N} \]

\[ E[A] \approx \sum_a \hat{P}(a) \cdot a \]

Why does this work? Because eventually you learn the right model.

**Unknown P(A): “Model Free”**

\[ E[A] \approx \frac{1}{N} \sum_i a_i \]

Why does this work? Because samples appear with the right frequencies.

Model-Free Learning

Passive Reinforcement Learning

- **Simplified task: policy evaluation**
  - Input: a fixed policy \( \pi(s) \)
  - You don’t know the transitions \( T(s,a,s') \)
  - You don’t know the rewards \( R(s,a,s') \)
  - **Goal:** learn the state values

- **In this case:**
  - Learner is “along for the ride”
  - No choice about what actions to take
  - Just execute the policy and learn from experience
  - This is NOT offline planning! You actually take actions in the world.
Direct Evaluation

- **Goal:** Compute values for each state under $\pi$
- **Idea:** Average together observed sample values
  - Act according to $\pi$
  - Every time you visit a state, write down what the sum of discounted rewards turned out to be
  - Average those samples
- This is called direct evaluation

**Problems with Direct Evaluation**

- **What’s good about direct evaluation?**
  - It’s easy to understand
  - It doesn’t require any knowledge of $T$, $R$
  - It eventually computes the correct average values, using just sample transitions
- **What bad about it?**
  - It wastes information about state connections
  - Each state must be learned separately
  - So, it takes a long time to learn

**Why Not Use Policy Evaluation?**

- **Simplified Bellman updates calculate $V$ for a fixed policy:**
  - Each round, replace $V$ with a one-step-look-ahead layer over $V$
  
  \[
  V_0^\pi(s) = 0 \\
  V_{k+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^\pi(s')] \\
  \]

- This approach fully exploited the connections between the states
- Unfortunately, we need $T$ and $R$ to do it!

- **Key question:** how can we do this update to $V$ without knowing $T$ and $R$?
  - In other words, how to we take a weighted average without knowing the weights?
Sample-Based Policy Evaluation?

- We want to improve our estimate of $V$ by computing these averages:
  \[
  V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]
  \]
  
- Idea: Take samples of outcomes $s'$ (by doing the action!) and average
  
  \[
  \text{sample}_1 = R(s, \pi(s), s'_1) + \gamma V_k^{\pi}(s'_1)
  \]
  \[
  \text{sample}_2 = R(s, \pi(s), s'_2) + \gamma V_k^{\pi}(s'_2)
  \]
  \[
  \text{...}
  \]
  \[
  \text{sample}_n = R(s, \pi(s), s'_n) + \gamma V_k^{\pi}(s'_n)
  \]
  \[
  V_{k+1}^{\pi}(s) \leftarrow \frac{1}{n} \sum_{i} \text{sample}_i
  \]

Temporal Difference Learning

- Big idea: learn from every experience!
  - Update $V(s)$ each time we experience a transition $(s, a, s', r)$
  - Likely outcomes $s'$ will contribute updates more often

- Temporal difference learning of values
  - Policy still fixed, still doing evaluation!
  - Move values toward value of whatever successor occurs: running average

\[ s \] \hspace{1cm} \pi(s) \hspace{1cm} s' \]

Sample of $V(s)$: \[ \text{sample} = R(s, \pi(s), s') + \gamma V^{\pi}(s') \]

Update to $V(s)$:
\[
V^{\pi}(s) \leftarrow (1 - \alpha) V^{\pi}(s) + (\alpha) \text{sample}
\]

Same update:
\[
V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha (\text{sample} - V^{\pi}(s))
\]

Exponential Moving Average

- Exponential moving average
  - The running interpolation update:
  \[
  \bar{x}_n = (1 - \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n
  \]
  
  - Makes recent samples more important:
  \[
  \bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \ldots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \ldots}
  \]
  
  - Forgets about the past (distant past values were wrong anyway)

- Decreasing learning rate (alpha) can give converging averages
Example: Temporal Difference Learning

Assume: $\gamma = 1, \alpha = 1/2$

<table>
<thead>
<tr>
<th>States</th>
<th>Observed Transitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B, east, C, -2</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>-1 0 8</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
</tr>
</tbody>
</table>

$V^\pi(s) \leftarrow (1 - \alpha)V^\pi(s) + \alpha [R(s, \pi(s), s') + \gamma V^\pi(s')]$

Problems with TD Value Learning

- TD value learning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages.
- However, if we want to turn values into a (new) policy, we’re sunk:
  \[
  \pi(s) = \arg \max_a Q(s, a)
  \]
  \[
  Q(s, a) = \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V(s') \right]
  \]

- Idea: learn Q-values, not values
- Makes action selection model-free too!

Active Reinforcement Learning

- Full reinforcement learning: optimal policies (like value iteration)
  - You don’t know the transitions $T(s, a, s')$
  - You don’t know the rewards $R(s, a, s')$
  - You choose the actions now
  - Goal: learn the optimal policy / values

- In this case:
  - Learner makes choices!
  - Fundamental tradeoff: exploration vs. exploitation
  - This is NOT offline planning! You actually take actions in the world and find out what happens…
Detour: Q-Value Iteration

- Value iteration: find successive (depth-limited) values
  - Start with $V_0(s) = 0$, which we know is right
  - Given $V_k$, calculate the depth $k+1$ values for all states:
    \[ V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V_k(s') \right] \]
- But $Q$-values are more useful, so compute them instead
  - Start with $Q_0(s, a) = 0$, which we know is right
  - Given $Q_k$, calculate the depth $k+1$ $Q$-values for all $q$-states:
    \[ Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right] \]

Q-Learning

- Q-Learning: sample-based $Q$-value iteration
  \[ Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right] \]
- Learn $Q(s, a)$ values as you go
  - Receive a sample $(s, a, s', r)$
  - Consider your old estimate: $Q(s, a)$
  - Consider your new sample estimate:
    \[ \text{sample} = R(s, a, s') + \gamma \max_{a'} Q(s', a') \]
  - Incorporate the new estimate into a running average:
    \[ Q(s, a) \leftarrow (1-\alpha) Q(s, a) + \alpha \text{[sample]} \]

Video of Demo Q-Learning -- Gridworld

Video of Demo Q-Learning -- Crawler
Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -- even if you’re acting suboptimally!

- This is called **off-policy learning**

- **Caveats:**
  - You have to explore enough
  - You have to eventually make the learning rate small enough
  - ... but not decrease it too quickly
  - Basically, in the limit, it doesn’t matter how you select actions (!)