Reinforcement Learning

- **Basic idea:**
 - Receive feedback in the form of *rewards*
 - Agent’s utility is defined by the reward function
 - Must (learn to) act so as to *maximize expected rewards*
 - All learning is based on observed samples of outcomes!

Example: Learning to Walk

- Initial
- A Learning Trial
- After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]
Example: Learning to Walk

Example: Sidewinding

Example: Toddler Robot

The Crawler!

Video of Demo Crawler Bot

Reinforcement Learning

- Still assume a Markov decision process (MDP):
 - A set of states $s \in S$
 - A set of actions (per state) A
 - A model $T(s,a,s')$
 - A reward function $R(s,a,s')$
- Still looking for a policy $\pi(s)$
- New twist: don't know T or R
 - I.e. we don't know which states are good or what the actions do
 - Must actually try out actions and states to learn
Model-Based Idea:
- Learn an approximate model based on experiences
- Solve for values as if the learned model were correct

Step 1: Learn empirical MDP model
- Count outcomes \(s' \) for each \(s, a \)
- Normalize to give an estimate of \(\hat{T}(s, a, s') \)
- Discover each \(\hat{R}(s, a, s') \) when we experience \((s, a, s') \)

Step 2: Solve the learned MDP
- For example, use value iteration, as before

Example: Model-Based Learning

Goal: Compute expected age of cs188 students

\[
E[A] = \sum_a P(a) \cdot a = 0.35 \times 20 + \ldots
\]

Without \(P(A) \), instead collect samples \([a_1, a_2, \ldots, a_N]\)

Why does this work? Because eventually you learn the right model.

\[
P(a) = \frac{\hat{m}(a)}{N}
\]

\[
E[A] = \sum_a P(a) \cdot a
\]

Why does this work? Because samples appear with the right frequencies.

Model-Free Learning
Passive Reinforcement Learning

- Simplified task: policy evaluation
 - Input: fixed policy $\pi(s)$
 - You don’t know the transitions $T(s,a,s')$
 - You don’t know the rewards $R(s,a,s')$
 - Goal: learn the state values

In this case:
- Learner is “along for the ride”
- No choice about what actions to take
- Just execute the policy and learn from experience
- This is NOT offline planning! You actually take actions in the world.

Direct Evaluation

- Goal: Compute values for each state under π
- Idea: Average together observed sample values
 - Act according to π
 - Every time you visit a state, write down what the sum of discounted rewards turned out to be
 - Average those samples
- This is called direct evaluation

Problems with Direct Evaluation

- What’s good about direct evaluation?
 - It’s easy to understand
 - It doesn’t require any knowledge of T, R
 - It eventually computes the correct average values, using just sample transitions

- What bad about it?
 - It wastes information about state connections
 - Each state must be learned separately
 - So, it takes a long time to learn

Why Not Use Policy Evaluation?

- Simplified Bellman updates calculate V for a fixed policy:
 - Each round, replace V with a one-step-look-ahead layer over V

$$V^\pi_0(s) = 0$$

$$V^\pi_{t+1}(s) = \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V^\pi_t(s')]$$

- This approach fully exploited the connections between the states
- Unfortunately, we need T and R to do it!

- Key question: how can we do this update to V without knowing T and R?
 - In other words, how to we take a weighted average without knowing the weights?
Sample-Based Policy Evaluation?

- We want to improve our estimate of V by computing these averages:
 \[V_{k+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s') \{ R(s, \pi(s), s') + \gamma V_k^\pi(s') \} \]
- Idea: Take samples of outcomes s' (by doing the action!) and average
 \[
 \begin{align*}
 &\text{sample}_1 = R(s, \pi(s), s_1') + \gamma V_0^\pi(s_1') \\
 &\text{sample}_2 = R(s, \pi(s), s_2') + \gamma V_0^\pi(s_2') \\
 &\ldots \\
 &\text{sample}_n = R(s, \pi(s), s_n') + \gamma V_0^\pi(s_n') \\
 \end{align*}
 \]
 \[V_{k+1}^\pi(s) \leftarrow \frac{1}{n} \sum_{i=1}^{n} \text{sample}_i \]

Temporal Difference Learning

- Big idea: learn from every experience!
 - Update $V(s)$ each time we experience a transition (s, a, s', r)
 - Likely outcomes s' will contribute updates more often
- Temporal difference learning of values
 - Policy still fixed, still doing evaluation!
 - Move values toward value of whatever successor occurs: running average

Sample of $V(s)$: \[\text{sample} \equiv R(s, \pi(s), s') + \gamma V_0^\pi(s') \]

Update to $V(s)$: \[V^\pi(s) \leftarrow (1 - \alpha) V^\pi(s) + \alpha \text{sample} \]

Same update: \[V^\pi(s) \leftarrow V^\pi(s) + \alpha (\text{sample} - V^\pi(s)) \]

Example: Temporal Difference Learning

<table>
<thead>
<tr>
<th>States</th>
<th>Observed Transitions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B, east, C, -2</td>
</tr>
<tr>
<td></td>
<td>C, east, D, -2</td>
</tr>
</tbody>
</table>

Assume: $\gamma = 1, \alpha = 1/2$

Temporal Difference Learning

- Exponential moving average
 - The running interpolation update: \[\bar{x}_n = (1 - \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n \]
 - Makes recent samples more important:
 \[\bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \ldots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \ldots} \]
 - Forgets about the past (distant past values were wrong anyway)
 - Decreasing learning rate (alpha) can give converging averages

Problems with TD Value Learning

- TD value leaning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages
- However, if we want to turn values into a (new) policy, we’re sunk:
 \[\pi(s) = \arg \max_a Q(s, a) \]
 \[Q(s, a) = \sum_{s'} T(s, a, s') \{ R(s, a, s') + \gamma V(s') \} \]
- Idea: learn Q-values, not values
- Makes action selection model-free too!
Active Reinforcement Learning

- Full reinforcement learning: optimal policies (like value iteration)
 - You don’t know the transitions $T(s,a,s')$
 - You don’t know the rewards $R(s,a,s')$
 - You choose the actions now
 - Goal: learn the optimal policy / values

- In this case:
 - Learner makes choices!
 - Fundamental tradeoff: exploration vs. exploitation
 - This is NOT offline planning! You actually take actions in the world and find out what happens...

Detour: Q-Value Iteration

- Value iteration: find successive (depth-limited) values
 - Start with $V_0(s) = 0$, which we know is right
 - Given V_k, calculate the depth $k+1$ values for all states:
 $$V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V_k(s') \right]$$
 - But Q-values are more useful, so compute them instead
 - Start with $Q_0(s,a) = 0$, which we know is right
 - Given Q_k, calculate the depth $k+1$ q-values for all q-states:
 $$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

Q-Learning

- Q-Learning: sample-based Q-value iteration
 $$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

- Learn $Q(s,a)$ values as you go
 - Receive a sample (s,a,s',r)
 - Consider your old estimate: $Q(s,a)$
 - Consider your new sample estimate:
 $$\text{sample} = R(s,a,s') + \gamma \max_{a'} Q_k(s',a')$$
 - Incorporate the new estimate into a running average:
 $$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha \text{[sample]}$$

Video of Demo Q-Learning -- Gridworld

Video of Demo Q-Learning -- Crawler
Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -- even if you’re acting suboptimally!

- This is called off-policy learning

Caveats:
- You have to explore enough
- You have to eventually make the learning rate small enough
- ... but not decrease it too quickly
- Basically, in the limit, it doesn't matter how you select actions (!)