
Announcements

§ Project 2 Mini-Contest (Optional)
§ Ends Sunday 9/30

§ Homework 5
§ Released, due Monday 10/1 at 11:59pm.

§ Project 3: RL
§ Released, due Friday 10/5 at 4:00pm.

CS 188: Artificial Intelligence
Reinforcement Learning II

Instructors: Pieter Abbeel & Dan Klein --- University of California, Berkeley
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.  All CS188 materials are available at http://ai.berkeley.edu.]

Reinforcement Learning

§ We still assume an MDP:
§ A set of states s Î S
§ A set of actions (per state) A
§ A model T(s,a,s’)
§ A reward function R(s,a,s’)

§ Still looking for a policy p(s)

§ New twist: don’t know T or R, so must try out actions

§ Big idea: Compute all averages over T using sample outcomes

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, p* Value / policy iteration

Evaluate a fixed policy p Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, p* VI/PI on approx. MDP

Evaluate a fixed policy p PE on approx. MDP

Goal Technique

Compute V*, Q*, p* Q-learning

Evaluate a fixed policy p Value Learning



Model-Free Learning

§ Model-free (temporal difference) learning
§ Experience world through episodes

§ Update estimates each transition

§ Over time, updates will mimic Bellman updates

r

a
s

s, a

s’
a’

s’, a’

s’’

Q-Learning

§ We’d like to do Q-value updates to each Q-state:

§ But can’t compute this update without knowing T, R

§ Instead, compute average as we go
§ Receive a sample transition (s,a,r,s’)
§ This sample suggests

§ But we want to average over results from (s,a)  (Why?)
§ So keep a running average

Q-Learning Properties

§ Amazing result: Q-learning converges to optimal policy -- even 
if you’re acting suboptimally!

§ This is called off-policy learning

§ Caveats:
§ You have to explore enough

§ You have to eventually make the learning rate

small enough

§ … but not decrease it too quickly

§ Basically, in the limit, it doesn’t matter how you select actions (!)

[Demo: Q-learning – auto – cliff grid (L11D1)]

Video of Demo Q-Learning Auto Cliff Grid



Exploration vs. Exploitation How to Explore?

§ Several schemes for forcing exploration
§ Simplest: random actions (e-greedy)

§ Every time step, flip a coin
§ With (small) probability e, act randomly
§ With (large) probability 1-e, act on current policy

§ Problems with random actions?
§ You do eventually explore the space, but keep 

thrashing around once learning is done
§ One solution: lower e over time
§ Another solution: exploration functions

[Demo: Q-learning – manual exploration – bridge grid (L11D2)] 
[Demo: Q-learning – epsilon-greedy -- crawler (L11D3)]

Video of Demo Q-learning – Manual Exploration – Bridge Grid Video of Demo Q-learning – Epsilon-Greedy – Crawler 



Exploration Functions

§ When to explore?

§ Random actions: explore a fixed amount

§ Better idea: explore areas whose badness is not

(yet) established, eventually stop exploring

§ Exploration function

§ Takes a value estimate u and a visit count n, and

returns an optimistic utility, e.g.

§ Note: this propagates the “bonus” back to states that lead to unknown states as well!

Modified Q-Update:

Regular Q-Update:

[Demo: exploration – Q-learning – crawler – exploration function (L11D4)]

Video of Demo Q-learning – Exploration Function – Crawler 

Regret

§ Even if you learn the optimal policy, 
you still make mistakes along the way!

§ Regret is a measure of your total 
mistake cost: the difference between 
your (expected) rewards, including 
youthful suboptimality, and optimal 
(expected) rewards

§ Minimizing regret goes beyond 
learning to be optimal – it requires 
optimally learning to be optimal

§ Example: random exploration and 
exploration functions both end up 
optimal, but random exploration has 
higher regret

Approximate Q-Learning



Generalizing Across States

§ Basic Q-Learning keeps a table of all q-values

§ In realistic situations, we cannot possibly learn 
about every single state!
§ Too many states to visit them all in training
§ Too many states to hold the q-tables in memory

§ Instead, we want to generalize:
§ Learn about some small number of training states from 

experience
§ Generalize that experience to new, similar situations
§ This is a fundamental idea in machine learning, and we’ll 

see it over and over again

[demo – RL pacman]

Example: Pacman

[Demo: Q-learning – pacman – tiny – watch all (L11D5)],[Demo: Q-learning – pacman – tiny – silent train (L11D6)], [Demo: Q-learning – pacman – tricky – watch all (L11D7)]

Let’s say we discover 
through experience 

that this state is bad:

In naïve q-learning, 
we know nothing 
about this state:

Or even this one!

Video of Demo Q-Learning Pacman – Tiny – Watch All Video of Demo Q-Learning Pacman – Tiny – Silent Train



Video of Demo Q-Learning Pacman – Tricky – Watch All Feature-Based Representations

§ Solution: describe a state using a vector of 

features (properties)

§ Features are functions from states to real numbers 

(often 0/1) that capture important properties of the 

state

§ Example features:

§ Distance to closest ghost

§ Distance to closest dot

§ Number of ghosts

§ 1 / (dist to dot)2

§ Is Pacman in a tunnel? (0/1)

§ …… etc.

§ Is it the exact state on this slide?

§ Can also describe a q-state (s, a) with features (e.g. 

action moves closer to food)

Linear Value Functions

§ Using a feature representation, we can write a q function (or value function) for any 
state using a few weights:

§ Advantage: our experience is summed up in a few powerful numbers

§ Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

§ Q-learning with linear Q-functions:

§ Intuitive interpretation:
§ Adjust weights of active features
§ E.g., if something unexpectedly bad happens, blame the features that were on: 

disprefer all states with that state’s features

§ Formal justification: online least squares

Exact Q’s

Approximate Q’s



Example: Q-Pacman

[Demo: approximate Q-
learning pacman (L11D10)]

Video of Demo Approximate Q-Learning -- Pacman

Q-Learning and Least Squares

0 20
0

20

40

0
10

20
30

40

0

10

20

30

20

22

24

26

Linear Approximation: Regression*

Prediction: Prediction:



Optimization: Least Squares*

0 20
0

Error or “residual”

Prediction

Observation

Minimizing Error*

Approximate q update explained:

Imagine we had only one point x, with features f(x), target value y, and weights w:

“target” “prediction”

0 2 4 6 8 10 12 14 16 18 20
-15

-10

-5

0

5

10

15

20

25

30

Degree 15 polynomial

Overfitting: Why Limiting Capacity Can Help* Policy Search



Policy Search

§ Problem: often the feature-based policies that work well (win games, maximize 
utilities) aren’t the ones that approximate V / Q best
§ E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they 

still produced good decisions
§ Q-learning’s priority: get Q-values close (modeling)
§ Action selection priority: get ordering of Q-values right (prediction)
§ We’ll see this distinction between modeling and prediction again later in the course

§ Solution: learn policies that maximize rewards, not the values that predict them

§ Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing 
on feature weights

Policy Search

§ Simplest policy search:
§ Start with an initial linear value function or Q-function
§ Nudge each feature weight up and down and see if your policy is better than before

§ Problems:
§ How do we tell the policy got better?
§ Need to run many sample episodes!
§ If there are a lot of features, this can be impractical

§ Better methods exploit lookahead structure, sample wisely, change 
multiple parameters…

RL: Helicopter Flight

[Andrew Ng] [Video: HELICOPTER]

RL: Learning Locomotion

[Video: GAE][Schulman, Moritz, Levine, Jordan, Abbeel, ICLR 2016]



RL: Learning Soccer

[Bansal et al, 2017]

RL: Learning Manipulation

[Levine*, Finn*, Darrell, Abbeel, JMLR 2016]

RL: NASA SUPERball

[Geng*, Zhang*, Bruce*, Caluwaerts, Vespignani, Sunspiral, Abbeel, Levine, ICRA 2017] Pieter Abbeel -- UC Berkeley | Gradescope | Covariant.AI

RL: In-Hand Manipulation

Pieter Abbeel -- UC Berkeley | Gradescope | 
Covariant.AI



OpenAI: Dactyl

Trained with domain randomization

[OpenAI]

Conclusion

§ We’re done with Part I: Search and Planning!

§ We’ve seen how AI methods can solve 
problems in:
§ Search
§ Constraint Satisfaction Problems
§ Games
§ Markov Decision Problems
§ Reinforcement Learning

§ Next up: Part II: Uncertainty and Learning!


