Announcement

- **Project 2 Mini-Contest** (Optional)
 - Ends Sunday 9/30

- **Homework 5**
 - Released, due Monday 10/1 at 11:59pm.

- **Project 3: RL**
 - Released, due Friday 10/5 at 4:00pm.

Reinforcement Learning

- **We still assume an MDP:**
 - A set of states \(s \in S \)
 - A set of actions (per state) \(A \)
 - A model \(T(s,a,s') \)
 - A reward function \(R(s,a,s') \)
- **Still looking for a policy \(\pi(s) \)**
- **New twist:** don’t know \(T \) or \(R \), so must try out actions
- **Big idea:** Compute all averages over \(T \) using sample outcomes

The Story So Far: MDPs and RL

Known MDP: Offline Solution

<table>
<thead>
<tr>
<th>Goal</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute (V^, Q^, \pi^*)</td>
<td>Value / policy iteration</td>
</tr>
<tr>
<td>Evaluate a fixed policy (\pi)</td>
<td>Policy evaluation</td>
</tr>
</tbody>
</table>

Unknown MDP: Model-Based

<table>
<thead>
<tr>
<th>Goal</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute (V^, Q^, \pi^*)</td>
<td>VI/PI on approx. MDP</td>
</tr>
<tr>
<td>Evaluate a fixed policy (\pi)</td>
<td>PE on approx. MDP</td>
</tr>
</tbody>
</table>

Unknown MDP: Model-Free

<table>
<thead>
<tr>
<th>Goal</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute (V^, Q^, \pi^*)</td>
<td>Q-learning</td>
</tr>
<tr>
<td>Evaluate a fixed policy (\pi)</td>
<td>Value Learning</td>
</tr>
</tbody>
</table>

Model-Free Learning

- **Model-free (temporal difference) learning**
 - Experience world through episodes
 \[
 (s, a, r, s', a', r', s'', a'', r'', s''', a''', r''', \ldots)
 \]
 - Update estimates each transition \((s, a, r, s')\)
 - Over time, updates will mimic Bellman updates

Q-Learning

- **We’d like to do Q-value updates to each Q-state:**
 \[
 Q_{k+1}(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]
 \]
 - But can’t compute this update without knowing \(T, R \)
 - Instead, compute average as we go
 - Receive a sample transition \((s,a,r,s')\)
 - This sample suggests
 \[
 Q(s,a) \leftarrow r + \gamma \max_{a'} Q_k(s', a')
 \]
 - But we want to average over results from \((s,a)\) (Why?)
 - So keep a running average
 \[
 Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha \left[r + \gamma \max_{a'} Q_k(s', a') \right]
 \]
Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -- even if you're acting suboptimally!
- This is called off-policy learning
- Caveats:
 - You have to explore enough
 - You have to eventually make the learning rate small enough
 - ... but not decrease it too quickly
 - Basically, in the limit, it doesn't matter how you select actions (!)

Exploration vs. Exploitation

- Several schemes for forcing exploration
 - Simplest: random actions (ε-greedy)
 - Every time step, flip a coin
 - With (small) probability ε, act randomly
 - With (large) probability $1-\varepsilon$, act on current policy
 - Problems with random actions?
 - You do eventually explore the space, but keep thrashing around once learning is done
 - One solution: lower ε over time
 - Another solution: exploration functions

How to Explore?

Video of Demo Q-Learning Auto Cliff Grid

Video of Demo Q-learning – Manual Exploration – Bridge Grid

Video of Demo Q-learning – Epsilon-Greedy – Crawler
Exploration Functions

- **When to explore?**
 - Random actions: explore a fixed amount
 - Better idea: explore areas whose badness is not (yet) established, eventually stop exploring

- **Exploration function**
 - Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g. $f(u, n) = u + k/n$
 - Regular Q-Update: $Q(s, a) = \gamma R(s, a, s') + \gamma \max_{Q(s', a')} Q(s', a')$
 - Modified Q-Update: $Q(s, a) = \gamma R(s, a, s') + \gamma \max_{Q(s', a')} Q(s', a')$
 - Note: this propagates the “bonus” back to states that lead to unknown states as well!

Modified Q-Update:

Video of Demo Q-learning – Exploration Function – Crawler

Regret

- Even if you learn the optimal policy, you still make mistakes along the way
- Regret is a measure of your total mistake cost: the difference between your (expected) rewards, including youthful suboptimality, and optimal (expected) rewards
- Minimizing regret goes beyond learning to be optimal – it requires optimally learning to be optimal
- Example: random exploration and exploration functions both end up optimal, but random exploration has higher regret

Approximate Q-Learning

- Basic Q-Learning keeps a table of all q-values
- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory
- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar situations
 - This is a fundamental idea in machine learning, and we’ll see it over and over again

Let’s say we discover through experience that this state is bad:

In naive q-learning, we know nothing about this state:

Or even this one!

Example: Pacman

Generalizing Across States

- Let’s say we discover through experience that this state is bad:
- In naive q-learning, we know nothing about this state:
- Or even this one!
Solution: describe a state using a vector of features [properties]
- Features are functions from states to real numbers (often 0/1) that capture important properties of the state
- Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - 1 / (dist to dot)
 - Is Pacman in a tunnel? [0/1]
 - ... etc.
- Is it the exact state on this slide?
- Can also describe a q-state (s, a) with features (e.g. action moves closer to food)

Linear Value Functions
- Using a feature representation, we can write a q function (or value function) for any state using a few weights:
 \[V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s) \]
 \[Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a) \]
- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning
- Q-learning with linear Q-functions:
 \[Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a) \]
 \[Q(s', a') = \max_{a'} Q(s', a') \]
 \[Q(s, a) = Q(s, a) + \alpha [\text{difference}] f_i(s, a) \]
 \[w_i = w_i + \alpha [\text{difference}] f_i(s, a) \]
- Intuitive interpretation:
 - Adjust weights of active features
 - E.g., if something unexpectedly bad happens, blame the features that were on: disregard all states with that state’s features
- Formal justification: online least squares
Example: Q-Pacman

\[Q(s,a) = 4.0 f_{\text{DOT}}(s,a) - 1.0 f_{\text{GST}}(s,a) \]

\[I_{\text{DOT}}(s, \text{NORTH}) = 0.5 \]
\[I_{\text{GST}}(s, \text{NORTH}) = 1.0 \]

\[\Delta = -501 \]

\[w_{\text{DOT}} \leftarrow 4.0 + \alpha [-501] 0.5 \]
\[w_{\text{GST}} \leftarrow -1.0 + \alpha [-501] 1.0 \]

\[Q(s,a) = 3.0 f_{\text{DOT}}(s,a) - 3.0 f_{\text{GST}}(s,a) \]

Video of Demo Approximate Q-Learning -- Pacman

Q-Learning and Least Squares

Linear Approximation: Regression

Optimization: Least Squares

Minimizing Error

Imagine we had only one point \(x \), with features \(f(x) \), target value \(y \), and weights \(w \):

\[\text{error}(w) = \frac{1}{2} \left(y - \sum_i w_i f_i(x) \right)^2 \]

\[\frac{\partial \text{error}(w)}{\partial w_i} = -\left(y - \sum_i w_i f_i(x) \right) f_i(x) \]

\[w_{\text{new}} \leftarrow w_{\text{old}} + \alpha \left[y - \sum_i w_i f_i(x) \right] f_i(x) \]

Approximate q update explained:

\[w_{\text{new}} \leftarrow w_{\text{old}} + \alpha \left[r + \gamma \max_{a'} Q(s',a') - Q(s,a) \right] f_a(s,a) \]

"target" "prediction"
Problem: often the feature-based policies that work well (win games, maximize utilities) aren’t the ones that approximate V / Q best
- E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they still produced good decisions
- Q-learning’s priority: get Q-values close (modeling)
- Action selection priority: get ordering of Q-values right (prediction)
- We’ll see this distinction between modeling and prediction again later in the course

Solution: learn policies that maximize rewards, not the values that predict them

Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing on feature weights

Policy search:
- Simplest policy search:
 - Start with an initial linear value function or Q-function
 - Nudge each feature weight up and down and see if your policy is better than before

- Problems:
 - How do we tell the policy got better?
 - Need to run many sample episodes!
 - If there are a lot of features, this can be impractical

- Better methods exploit lookahead structure, sample wisely, change multiple parameters...
Conclusion

- We're done with Part I: Search and Planning!
- We've seen how AI methods can solve problems in:
 - Search
 - Constraint Satisfaction Problems
 - Games
 - Markov Decision Problems
 - Reinforcement Learning
- Next up: Part II: Uncertainty and Learning!