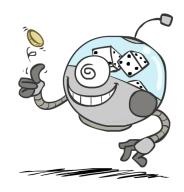
CS188 Outline

- We're done with Part I: Search and Planning!
- Part II: Probabilistic Reasoning
 - Diagnosis
 - Speech recognition
 - Tracking objects
 - Robot mapping
 - Genetics
 - Error correcting codes
 - ... lots more!
- Part III: Machine Learning

Today

- Probability
 - Random Variables
 - Joint and Marginal Distributions
 - Conditional Distribution
 - Product Rule, Chain Rule, Bayes' Rule
 - Inference
 - Independence
- You'll need all this stuff A LOT for the next few weeks, so make sure you go over it now!



CS 188: Artificial Intelligence

Instructors: Dan Klein and Pieter Abbeel --- University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Inference in Ghostbusters

- A ghost is in the grid somewhere
- Sensor readings tell how close a square is to the ghost
 - On the ghost: red
 - 1 or 2 away: orange
 - 3 or 4 away: yellow
 - 5+ away: green
 - Sensors are noisy, but we know P(Color | Distance)
 - P(red | 3) P(orange | 3) P(yellow | 3) P(green | 3) 0.05 0.15

[Demo: Ghostbuster - no probability (L12D1)]

Uncertainty

General situation:

- Observed variables (evidence): Agent knows certain things about the state of the world (e.g., sensor readings or symptoms)
- Unobserved variables: Agent needs to reason about other aspects (e.g. where an object is or what disease is present)
- Model: Agent knows something about how the known variables relate to the unknown variables
- Probabilistic reasoning gives us a framework for managing our beliefs and knowledge

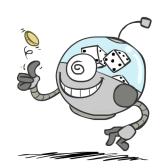
Probability Distributions

- Associate a probability with each value
 - Temperature:

Weather:

Random Variables

- A random variable is some aspect of the world about which we (may) have uncertainty
 - R = Is it raining?
 - T = Is it hot or cold?
 - D = How long will it take to drive to work?
 - L = Where is the ghost?
- We denote random variables with capital letters
- Like variables in a CSP, random variables have domains
 - R in {true, false} (often write as {+r, -r})
 - T in {hot, cold}
 - D in [0, ∞)
 - L in possible locations, maybe {(0,0), (0,1), ...}



Probability Distributions

Unobserved random variables have distributions

	P(Z)	Γ)
l	T	Р
	hot	0.5
	cold	0.5

P(W)		
W	Р	
sun	0.6	
rain	0.1	
fog	0.3	
meteor	0.0	

Shorthand notation:

$$P(hot) = P(T = hot),$$

 $P(cold) = P(T = cold),$
 $P(rain) = P(W = rain),$
...

OK if all domain entries are unique

- A distribution is a TABLE of probabilities of values
- A probability (lower case value) is a single number

$$P(W = rain) = 0.1$$

• Must have:
$$\forall x \ P(X=x) \geq 0$$
 and $\sum_x P(X=x) = 1$

Joint Distributions

A joint distribution over a set of random variables: X₁, X₂,... X_n specifies a real number for each assignment (or outcome):

$$P(X_1 = x_1, X_2 = x_2, \dots X_n = x_n)$$

 $P(x_1, x_2, \dots x_n)$

• Must obey: $P(x_1, x_2, \dots x_n) \geq 0$

$$\sum_{(x_1, x_2, \dots x_n)} P(x_1, x_2, \dots x_n) = 1$$

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

P(T, W)

sun

rain

sun rain 0.4

0.1

0.2

0.3

hot

hot

cold

- Size of distribution if n variables with domain sizes d?
 - For all but the smallest distributions, impractical to write out!

Probabilistic Models

- A probabilistic model is a joint distribution over a set of random variables
- Probabilistic models:
 - (Random) variables with domains
 - Assignments are called outcomes
 - Joint distributions: say whether assignments (outcomes) are likely
 - Normalized: sum to 1.0
 - Ideally: only certain variables directly interact
- Constraint satisfaction problems:
 - Variables with domains
 - Constraints: state whether assignments are possible
 - Ideally: only certain variables directly interact

Distribution over T,W

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Constraint over T,W

Т	W	Р
hot	sun	Т
hot	rain	F
cold	sun	F
cold	rain	Т

Events

An event is a set E of outcomes

$$P(E) = \sum_{(x_1...x_n) \in E} P(x_1...x_n)$$

- From a joint distribution, we can calculate the probability of any event
 - Probability that it's hot AND sunny?
 - Probability that it's hot?
 - Probability that it's hot OR sunny?
- Typically, the events we care about are partial assignments, like P(T=hot)

■ P(+x, +y) ?

P(+x)?

■ P(-y OR +x) ?

Quiz: Events

X	Υ	Р
+x	+y	0.2
+x	-у	0.3
-x	+y	0.4
-x	-у	0.1

P(X,Y)

Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding

0.6 0.4

P(T, W)				
Т	W	Р		
hot	sun	0.4		
hot	rain	0.1		
cold	sun	0.2		

$$P(t) = \sum_{s} P(t, s)$$

$$P(s) = \sum_{t} P(t, s)$$

$$P(X_1 = x_1) = \sum_{x_2} P(X_1 = x_1, X_2 = x_2)$$

Quiz: Marginal Distributions

P(X,Y)			
Χ	Υ	Р	
+χ	+y	0.2	
+x	-у	0.3	
-X	+y	0.4	
-x	-у	0.1	

$$P(x) = \sum_{y} P(x, y)$$

$$P(y) = \sum_{x} P(x, y)$$

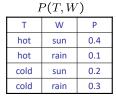
	P(x,y)
1	

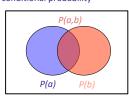
P(Y)		
Υ	Р	
+y		
-y		

Conditional Probabilities

- A simple relation between joint and conditional probabilities
 - In fact, this is taken as the *definition* of a conditional probability

$$P(a|b) = \frac{P(a,b)}{P(b)}$$





$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)} = \frac{0.2}{0.5} = 0.4$$

$$= P(W = s, T = c) + P(W = r, T = c)$$

$$= 0.2 + 0.3 = 0.5$$

Quiz: Conditional Probabilities

P(X,Y)			
Χ	Υ	Р	
+χ	+y	0.2	
+χ	-у	0.3	
-X	+y	0.4	
-x	-у	0.1	

■ P(+x | +y)?

Conditional Distributions

 Conditional distributions are probability distributions over some variables given fixed values of others

Conditional Distributions

F	P(W T)	=	colo	Į)
	W		Р	

sun rain 0.4

0.6

Joint Distribution

P(T,W)Р hot 0.4 sun hot rain 0.1

sun

rain

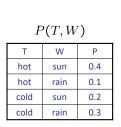
0.2

0.3

cold

cold

Normalization Trick



$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)}$$

$$= \frac{P(W = s, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.2}{0.2 + 0.3} = 0.4$$

$$P(W | T = c)$$

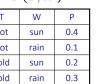
$$= \frac{P(W = r, T = c)}{P(T = c)}$$

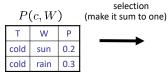
$$= \frac{P(W = r, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

Normalization Trick

$$\begin{split} P(W = s | T = c) &= \frac{P(W = s, T = c)}{P(T = c)} \\ &= \frac{P(W = s, T = c)}{P(W = s, T = c) + P(W = r, T = c)} \\ &= \frac{0.2}{0.2 + 0.3} = 0.4 \end{split}$$

P(T,W)W hot sun 0.4 rain 0.1 cold sun 0.2 cold





NORMALIZE the

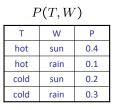
$$P(W|T=c)$$

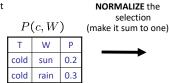
$$\begin{array}{|c|c|}\hline W & P \\\hline sun & 0.4 \\\hline rain & 0.6 \\\hline \end{array}$$

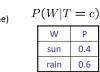
$$\begin{split} P(W=r|T=c) &= \frac{P(W=r,T=c)}{P(T=c)} \\ &= \frac{P(W=r,T=c)}{P(W=s,T=c) + P(W=r,T=c)} \\ &= \frac{0.3}{0.2 + 0.3} = 0.6 \end{split}$$

Normalization Trick

 $=\frac{0.3}{0.2+0.3}=0.6$







Р

Why does this work? Sum of selection is P(evidence)! (P(T=c), here)

$$P(x_1|x_2) = \frac{P(x_1, x_2)}{P(x_2)} = \frac{P(x_1, x_2)}{\sum_{x_1} P(x_1, x_2)}$$

Quiz: Normalization Trick

■ P(X | Y=-y)?

P(X,Y)

Χ	Υ	Р
+x	+y	0.2
+χ	-у	0.3
-x	+y	0.4
-X	-у	0.1

SELECT the joint probabilities matching the evidence

NORMALIZE the selection (make it sum to one)

Probabilistic Inference

- Probabilistic inference: compute a desired probability from other known probabilities (e.g. conditional from joint)
- We generally compute conditional probabilities
 - P(on time | no reported accidents) = 0.90
 - These represent the agent's beliefs given the evidence
- Probabilities change with new evidence:
 - P(on time | no accidents, 5 a.m.) = 0.95
 - P(on time | no accidents, 5 a.m., raining) = 0.80
 - Observing new evidence causes beliefs to be updated

To Normalize

(Dictionary) To bring or restore to a normal condition

- Procedure:
 - Step 1: Compute Z = sum over all entries
 - Step 2: Divide every entry by Z

Example 1

W	Р	Normalize	W	Р
sun	0.2	\rightarrow	sun	0.4
rain	0.3	Z = 0.5	rain	0.6

Example 2

Т	W	Р		Т	W
hot	sun	20	Normalize	hot	sun
hot	rain	5		hot	rain
cold	sun	10	Z = 50	cold	sun
cold	rain	15		cold	rain

Inference by Enumeration

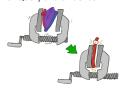
 $X_1, X_2, \dots X_n$

All variables

- General case:
 - Evidence variables:

Step 1: Select the entries consistent with the evidence

Step 2: Sum out H to get joint of Query and evidence



$$P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(Q, h_1 \dots h_r, e_1 \dots e_k)$$

$$X_1, X_2, \dots X_n$$

$$Z = \sum_q P(Q, e_1 \dots e_k)$$

$$P(Q|e_1 \dots e_k) = \frac{1}{Z} P(Q, e_1 \dots e_k)$$

 $E_1 \dots E_k = e_1 \dots e_k$

- We want:
- * Works fine with multiple query variables, too

Р 0.4 0.1

0.2

0.3

$$P(Q|e_1 \dots e_k)$$

Step 3: Normalize

$$\times \frac{1}{Z}$$

$$Z = \sum_{q} P(Q, e_1 \cdots e_k)$$

$$P(Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$$

Inference by Enumeration

P(W)?

P(W | winter)?

P(W | winter, hot)?

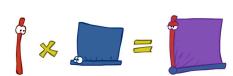
S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

The Product Rule

Sometimes have conditional distributions but want the joint

$$P(y)P(x|y) = P(x,y)$$
 \Leftrightarrow $P(x|y) = \frac{P(x,y)}{P(y)}$

$$P(x|y) = \frac{P(x,y)}{P(y)}$$



Inference by Enumeration

- Obvious problems:
 - Worst-case time complexity O(dⁿ)
 - Space complexity O(dⁿ) to store the joint distribution

The Product Rule

$$P(y)P(x|y) = P(x,y)$$

Example:

P(W)

P(D W)			
	D	W	Р
	wet	sun	0.1
	dry	sun	0.9
	wet	rain	0.7
	dry	rain	0.3

L
Γ
Г
Γ
Г

D	W	Р
wet	sun	
dry	sun	
wet	rain	
dry	rain	

P(D,W)

The Chain Rule

 More generally, can always write any joint distribution as an incremental product of conditional distributions

$$P(x_1, x_2, x_3) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2)$$

$$P(x_1, x_2, \dots x_n) = \prod_i P(x_i|x_1 \dots x_{i-1})$$

Why is this always true?

Bayes' Rule

Two ways to factor a joint distribution over two variables:

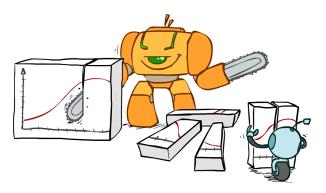
$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$

Dividing, we get:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- Why is this at all helpful?
 - Lets us build one conditional from its reverse
 - Often one conditional is tricky but the other one is simple
 - Foundation of many systems we'll see later (e.g. ASR, MT)
- In the running for most important AI equation!

Bayes Rule



Inference with Bayes' Rule

• Example: Diagnostic probability from causal probability:

$$P(\text{cause}|\text{effect}) = \frac{P(\text{effect}|\text{cause})P(\text{cause})}{P(\text{effect})}$$

- Example:
 - M: meningitis, S: stiff neck

$$P(+m) = 0.0001 \\ P(+s|+m) = 0.8 \\ P(+s|-m) = 0.01$$
 Example givens

$$P(+m|+s) = \frac{P(+s|+m)P(+m)}{P(+s)} = \frac{P(+s|+m)P(+m)}{P(+s|+m)P(+m) + P(+s|-m)P(-m)} = \frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.01 \times 0.999}$$

- Note: posterior probability of meningitis still very small
- Note: you should still get stiff necks checked out! Why?

Quiz: Bayes' Rule

• Given:

P(W)		
Р		
0.8		
0.2		

P(D|W)

D	W	Р
wet	sun	0.1
dry	sun	0.9
wet	rain	0.7
dry	rain	0.3

■ What is P(W | dry)?

Next Time: Markov Models

Ghostbusters, Revisited

- Let's say we have two distributions:
 - Prior distribution over ghost location: P(G)
 - Let's say this is uniform
 - Sensor reading model: P(R | G)
 - Given: we know what our sensors do
 - R = reading color measured at (1,1)
 - E.g. P(R = yellow | G=(1,1)) = 0.1
- We can calculate the posterior distribution P(G|r) over ghost locations given a reading using Bayes' rule:

$$P(g|r) \propto P(r|g)P(g)$$

[Demo: Ghostbuster – with probability (L12D2)]