CS188 Outline CS 188: Artificial Intelligence

= We’re done with Part I: Search and Planning! Probability

= Part Il: Probabilistic Reasoning
= Diagnosis
= Speech recognition
= Tracking objects
= Robot mapping
= Genetics
= Error correcting codes
= ... lots more!

= Part Ill: Machine Learning Instructors: Dan Klein and Pieter Abbeel - University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Today Inference in Ghostbusters

= Probability

= Random Variables

= Aghostisin the grid
somewhere

Sensor readings tell how
close a square is to the
ghost

= On the ghost: red

= 1or2away: orange

= Joint and Marginal Distributions

= Conditional Distribution

= Product Rule, Chain Rule, Bayes’ Rule
= Inference

= Independence = 3or4away: yellow

= 5+away: green

= You'll need all this stuff A LOT for the
next few weeks, so make sure you go
over it now!

= Sensors are noisy, but we know P(Color | Distance)

P(red | 3) P(orange | 3) P(yellow | 3) P(green | 3)
0.05 0.15 0.5 0.3
[Demo: Ghostbuster — no probability (L12D1) ]

Uncertainty Random Variables

= Arandom variable is some aspect of the world about
which we (may) have uncertainty

= General situation:

= Observed variables (evidence): Agent knows certain
things about the state of the world (e.g., sensor

® R=lsitraining?
readings or symptoms)

= T=lsit hotor cold?
= D =How long will it take to drive to work?
= L =Where is the ghost?

Unobserved variables: Agent needs to reason about
other aspects (e.g. where an object is or what disease is
present)

Model: Agent knows something about how the known . = We denote random variables with capital letters
variables relate to the unknown variables

= Like variables in a CSP, random variables have domains

= Probabilistic reasoning gives us a framework for

] 0 ® Rin{true, false} (often write as {+r, -r})
managing our beliefs and knowledge

. = Tin {hot, cold}
= Din [0, x)
= Lin possible locations, maybe {(0,0), (0,1), ...}




Probability Distributions Probability Distributions

= Associate a probability with each value

= Temperature: = Weather:
P(T)
T 3 @
hot 0.5
cold | 0.5

Joint Distributions

= Unobserved random variables have distributions -
Shorthand notation:

P(T) P(W)
T P w P P(hot) = P(T = hot),
h o. 0.6
e il P(cold) = P(T = cold),

P(W) cold | 0.5 rain 0.1

fog 03 P(rain) = P(W = rain),
// w P meteor 0.0 .
> i o1 = Adistribution is a TABLE of probabilities of values OK if all domain entries are unique
& -
- m fog 03 = A probability (lower case value) is a single number
meteor 0.0

P(W = rain) = 0.1
* Musthave: Vg P(X=z)>0 and Y P(X=2z)=1
x

Probabilistic Models

= A joint distribution over a set of random variables: X7, X»,..

specifies a real number for each assignment (or outcome):

X, .
" = A probabilistic model is a joint distribution Distribution over TW

over a set of random variables

T w P a
2
P(X1=ux1,X0 =12,... Xn = 2n) = Probabilistic models: hot sun 0.4
P(T’ [/V) = (Random) variables with domains hot rain 0.1
P(zl, Ty In) = Assignments are called outcomes
T W p = Joint distributions: say whether assi cold sun 0.2
(outcomes) are likely Id . 03
= Must obey: P(z1,22,...2n) >0 hot | sun | 0.4 = Normalized: sum to 1.0 © fain -
hot rain 0.1 = Ideally: only certain variables directly interact Constraint over TW
P(zy,z0,...2p) =1 .
Z ) (w1, 22, n) cold | sun | 0.2 = Constraint satisfaction problems: T W P
(@1,22,...2n) cold | rain | 0.3 = Variables with domains hot wun T
= Constraints: state whether assignments are
possible hot rain F
= Size of distribution if n variables with domain sizes d? ® Ideally: only certain variables directly interact [~ = - F
= For all but the smallest distributions, impractical to write out! cold rain T
Events Quiz: Events
= An event is a set E of outcomes " P(x, +y)? P(X,Y)
P(E) = 2 P(zy...zpn) X Y p
(z1..xn)EE +X + 0.2
e P : = P(+x)? Y -
= From a joint distribution, we can P(T, W) +x v | 03
calculate the probability of any event T W 5 x +y 0.4
. B -X -y 0.1
= Probability that it’s hot AND sunny? hot sun 0.4

= Probability that it’s hot?

= Probability that it's hot OR sunny?

= Typically, the events we care about
are partial assignments, like P(T=hot)

= P(-y OR+x)?
hot rain 0.1

cold sun 0.2

cold rain 0.3




Marginal Distributions

Quiz: Marginal Distributions

= Marginal distributions are sub-tables which eliminate variables
= Marginalization (summing out): Combine collapsed rows by adding

P(T)
P(T, W) T ’
> hot 0.5
T w P » o pye
hot sun 0.4 P(t) = ZPU‘*S) © :
hot rain 0.1 s P(W)
cold sun 0.2 W P
cold rain 0.3 > sun 0.6
P(s) = ; P(t,s) rain 0.4

P(Xy=u11) =) P(X1=u11,Xp =)
o

Conditional Probabilities

P(X)
P(X,Y) X P
> +X
X Y P ”
+X +y 0.2 P(z) = ZP('an) =
+X -y 0.3 v P(Y)
-X +y 0.4 Y P
-X -y 0.1 > +y
P(y) =3 P(z,y) "
x

Quiz: Conditional Probabilities

= Asimple relation between joint and conditional probabilities
= In fact, this is taken as the definition of a conditional probability

= P(+x | +y)?

P(X,Y)
X Y P
P(a,b
P(alb) = ]E‘ab ) w |+ | 02 = P(x | +y)?
( ) +X -y 0.3
-X +y 0.4
P(T, W) Pe) % | 4 | o1
— — = Py | +x)?
T w P _ _ P(W=sT=c) _02
ot | wn [ oa | PV=sl=o=""pm2 =055 =04
hot rain 0.1 %
cold | sun 0.2 =PW=sT=c)+P(W=nrT=c)
cold rain 0.3 =02+403 =05
Conditional Distributions Normalization Trick
= Conditional distributions are probability distributions over )
some variables given fixed values of others P(W=sT=c)= %
/Conditional Distributions Joint Distribution P(T, W) = 5= sf;(:‘j;};(if): -5
P(W|T = hot — . —
W ) P(T,W) T w P =02+03 % P(W|T =¢)
w P T W P hot sun 0.4 m b
— sun 0.8 hot sun 0.4 hot rain 0.1 g sun 0.4
i rain 0.2 - Id 0.2 .
= hot rain 0.1 col sun - POW = rain | 0.6
~ P(W|T = cold) cold sun 0.2 cold rain 03 PW =r|T'=c) = P(T =
a - ST =
w p cold rain 0.3 _ PW=rT=c)
PW=sT=c)+PW=rT=c)
sun 0.4 0.3 06
L rain 0.6 02+0.3 :




Normalization Trick Normalization Trick

PW =

POV =sT =)=

SV =nT=5
P(T,W) SELECT the joint NORMALIZE the
probabilities selection P(WIT =
T w P i P(e, W ke it sum t WIT = ¢)
P(T,W) SELECT the joint NORMALIZE the - matc_gmgthe (¢, W)  (makeitsum toone)
probabilities selection P(WI|T = ¢) ot sun 04 evidence T|w|pP R w P
T W P matching the P(c,W) (make it sum to one) - hot rain 0.1 » cold | sun |02 > sun | 0.4
hot sun 0.4 evidence Tl wlp R W P cold sun 0.2 cold | rain | 0.3 rain | 0.6
hot rain 0.1 v cold | sun | 0.2 v sun | 0.4 cold rain 0.3
cold sun 0.2 cold | rain | 0.3 rain 0.6
cold | rain | 03 = Why does this work? Sum of selection is P(evidence)! (P(T=c), here)
rorsn=o= P(x1,22) P(x1,72)
5 P(z1|22) = =
P(a2) Yy Ple1,22)
Quiz: Normalization Trick To Normalize

= P(X | Y=-y) ? = (Dictionary) To bring or restore to a

All entries sum to ONE

P(X,Y) SELECT the joint NORMALIZE the
probabilities selection = Procedure:
X Y P matching the (make it sum to one) = Step 1: Compute Z = sum over all entries
+X +y 0.2 evidence = Step 2: Divi
p 2: Divide every entry by Z
+X -y 0.3 — )
x Y 04 = Example 1 = Example 2
-X -y 0.1
w P Normalize w P T w P ) T w P
sun 0.2 > sun 0.4 hot sun 20 Normalize | hot sun 0.4
N _ N hot | rain 5 1ot | rain | 0.1
rain 0.3 Z=05 rain 0.6 7 =50
cold | sun 10 - cold | sun 0.2
cold rain 15 cold rain 0.3
Probabilistic Inference Inference by Enumeration
G i w " * Works fine with
o ) = General case: - ‘e want: multiple query
= Probabilistic inference: compute a desired * Evidencevariables: B By =e1...ex | X X, ... X, variables, too
probability from other known probabilities (e.g. * Query* variable: Q Allvariables P(Qley...e)

conditional from joint) * Hidden variables: Hip...Hy

L P = Step 1: Select the = Step 2: Sum out H to get joint = Step 3: Normalize
= We generally compute conditional probabilities entries consistent of Query and evidence
= P(on time | no reported accidents) = 0.90 with the evidence ) 1
”

= These represent the agent’s beliefs given the evidence ><
o Z

Probabilities change with new evidence:
= P(ontime | no accidents, 5 a.m.) =0.95

= P(ontime | no accidents, 5 a.m., raining) = 0.80 7= Z P(Q,e1---er)
= Observing new evidence causes beliefs to be updated P(Q.e1...ep) = 2 P(Qh1...hroer...e) N
hichy S~ ceep) = L
X1, X2, ... Xn P(Qler--ex) = ZP(Q,E'J ex)



Inference by Enumeration Inference by Enumeration

s T w P

" P(W)? o o = Obvious problems:

summer | hot rain 0.05 = Worst-case time complexity O(d")

summer | cold sun | 010 = Space complexity O(d") to store the joint distribution
= P(W | winter)? summer | cold | rain | 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20

= P(W | winter, hot)?

The Product Rule The Product Rule

= Sometimes have conditional distributions but want the joint P(y)P($|y) — _F)(aj7 y)
P(y)P(aly) = P(z,y) &= rew="50

= Example:
P(D|W) P(D,W)
P(W) D W P D w P
R b wet sun 0.1 wet sun
é;g P dry su.n 0.9 <:> dry sun
ain | 02 wet rain | 0.7 wet rain
dry rain | 0.3 dry rain

The Chain Rule Bayes Rule

= More generally, can always write any joint distribution as an
incremental product of conditional distributions

P(z1,22,23) = P(21) P(22|21) P(23|1, ©2)

P(zy,25,...20) = [[ P(ziloy ... 2im1)
;

= Why is this always true?




Bayes’ Rule Inference with Bayes’ Rule

= Two ways to factor a joint distribution over two variables: = Example: Diagnostic probability from causal probability:

P(effect|cause) P(cause)
P(z,y) = P(z|y) P(y) = P(y|z) P(x) T DPleffect)

P(causeleffect) =

P(effect)
i A = Example:
Dividing, we get: = M: meningitis, S: stiff neck (dm)
Pyl P(+m) = 0.0001
= E I
Plaly) = 50 sP(@) P(ts+m) =08 - Gt

= Why is this at all helpful? P(ts| —m) =001

P(+m|+s) = P(+s| +m)P(+m) _ P(+s| +m)P(+m) - 0.8 x 0.0001
N P+s) = P(+s|+ m)P(+m) + P(+s| —m)P(—m) _ 0.8 x 0.0001 + 0.01 x 0.999

= Lets us build one conditional from its reverse
= Often one conditional is tricky but the other one is simple
= Foundation of many systems we'll see later (e.g. ASR, MT)

= Note: posterior probability of meningitis still very small

= |n the running for most important Al equation! = Note: you should still get stiff necks checked out! Why?
.. ), . .
Quiz: Bayes’ Rule Ghostbusters, Revisited
Gi P(DIW)
n .
iven: P(W) D w 3 = Let’s say we have two distributions:
wet sun | 0.1 = Prior distribution over ghost location: P(G)
R P dry sun | 0.9 = Let’s say this is uniform
sun | 08 " - 0'7 = Sensor reading model: P(R | G)
rain | 0.2 we rarn . = Given: we know what our sensors do
dry rain | 0.3 = R =reading color measured at (1,1)

= E.g. P(R=yellow | G=(1,1)) =0.1

= Whatis P(W | dry) ?
= We can calculate the posterior

distribution P(G|r) over ghost locations
given a reading using Bayes’ rule:

P(g|r) o< P(r|g)P(g)

[Demo: Ghostbuster — with probability (L12D2) ]

Next Time: Markov Models




