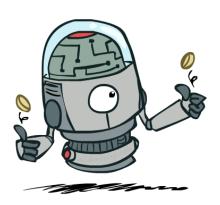
### CS 188: Artificial Intelligence

#### Bayes' Nets



Instructors: Dan Klein and Pieter Abbeel --- University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]


#### **Probabilistic Models**

- Models describe how (a portion of) the world works
- Models are always simplifications
  - May not account for every variable
  - May not account for all interactions between variables
  - "All models are wrong; but some are useful."
     George E. P. Box



- What do we do with probabilistic models?
  - We (or our agents) need to reason about unknown variables, given evidence
  - Example: explanation (diagnostic reasoning)
  - Example: prediction (causal reasoning)
  - Example: value of information

### Independence



### Independence

■ Two variables are *independent* if:

$$\forall x, y : P(x, y) = P(x)P(y)$$

- This says that their joint distribution factors into a product two simpler distributions
- Another form:

$$\forall x, y : P(x|y) = P(x)$$



- Empirical joint distributions: at best "close" to independent
- What could we assume for {Weather, Traffic, Cavity, Toothache}?



# Example: Independence?

| P(I) |     |  |
|------|-----|--|
| Т    | Р   |  |
| hot  | 0.5 |  |
| cold | 0.5 |  |



| Т    | W    | Р   |
|------|------|-----|
| hot  | sun  | 0.4 |
| hot  | rain | 0.1 |
| cold | sun  | 0.2 |
| cold | rain | 0.3 |

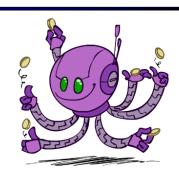
P(W)

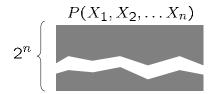
| P(VV) |     |  |
|-------|-----|--|
| W     | Р   |  |
| sun   | 0.6 |  |
| rain  | 0.4 |  |

 $P_2(T,W)$ 

| Т    | W    | Р   |
|------|------|-----|
| hot  | sun  | 0.3 |
| hot  | rain | 0.2 |
| cold | sun  | 0.3 |
| cold | rain | 0.2 |

# Example: Independence


### • N fair, independent coin flips:


| $P(X_1)$ |     |  |
|----------|-----|--|
| Н        | 0.5 |  |
| Т        | 0.5 |  |

| $P(X_2)$ |     |
|----------|-----|
| Н        | 0.5 |
| Т        | 0.5 |

. .

| $P(X_n)$ |     |  |
|----------|-----|--|
| Н        | 0.5 |  |
| Т        | 0.5 |  |







#### Conditional Independence

- P(Toothache, Cavity, Catch)
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
  - P(+catch | +toothache, +cavity) = P(+catch | +cavity)
- The same independence holds if I don't have a cavity:
  - P(+catch | +toothache, -cavity) = P(+catch | -cavity)
- Catch is conditionally independent of Toothache given Cavity:
  - P(Catch | Toothache, Cavity) = P(Catch | Cavity)



- P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
- P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
- One can be derived from the other easily



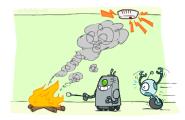
- Unconditional (absolute) independence very rare (why?)
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.
- X is conditionally independent of Y given Z

if and only if:

$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$

or, equivalently, if and only if

$$\forall x, y, z : P(x|z, y) = P(x|z)$$


# **Conditional Independence**

- What about this domain:
  - Traffic
  - Umbrella
  - Raining



# **Conditional Independence**

- What about this domain:
  - Fire
  - Smoke
  - Alarm





### Conditional Independence and the Chain Rule

- Chain rule:  $P(X_1, X_2, ... X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)...$
- Trivial decomposition:

$$P(\text{Traffic}, \text{Rain}, \text{Umbrella}) = P(\text{Rain})P(\text{Traffic}|\text{Rain})P(\text{Umbrella}|\text{Rain}, \text{Traffic})$$



$$P(\text{Traffic}, \text{Rain}, \text{Umbrella}) = P(\text{Rain})P(\text{Traffic}|\text{Rain})P(\text{Umbrella}|\text{Rain})$$

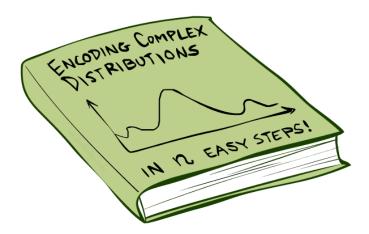


#### **Ghostbusters Chain Rule**

- Each sensor depends only on where the ghost is
- That means, the two sensors are conditionally independent, given the ghost position
- T: Top square is red B: Bottom square is red G: Ghost is in the top
- Givens:

$$P(+g) = 0.5$$
  
 $P(-g) = 0.5$   
 $P(+t \mid +g) = 0.8$   
 $P(+t \mid -g) = 0.4$   
 $P(+b \mid +g) = 0.4$ 

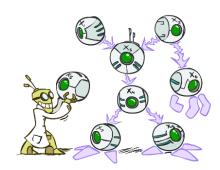



| 0.50 |
|------|
| 0.50 |

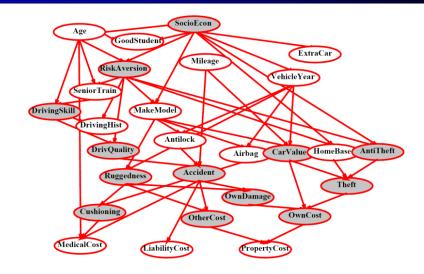
#### P(T,B,G) = P(G) P(T|G) P(B|G)

| Т  | В  | G  | P(T,B,G) |
|----|----|----|----------|
| +t | +b | +g | 0.16     |
| +t | +b | -g | 0.16     |
| +t | -b | +g | 0.24     |
| +t | -b | -g | 0.04     |
| -t | +b | +g | 0.04     |
| -t | +b | -g | 0.24     |
| -t | -b | +g | 0.06     |
| -t | -b | -g | 0.06     |
|    |    |    |          |

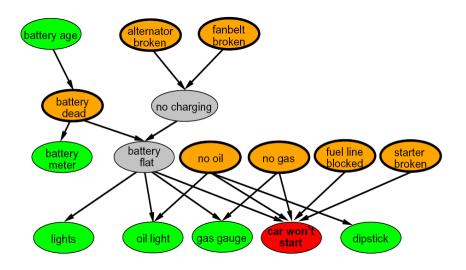



### Bayes'Nets: Big Picture




#### Bayes' Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
  - Unless there are only a few variables, the joint is WAY too big to represent explicitly
  - Hard to learn (estimate) anything empirically about more than a few variables at a time
- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
  - More properly called graphical models
  - We describe how variables locally interact
  - Local interactions chain together to give global, indirect interactions
  - For about 10 min, we'll be vague about how these interactions are specified

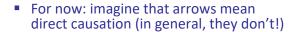


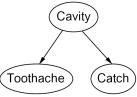



### Example Bayes' Net: Insurance



### Example Bayes' Net: Car





### **Graphical Model Notation**

- Nodes: variables (with domains)
  - Can be assigned (observed) or unassigned (unobserved)



- Arcs: interactions
  - Similar to CSP constraints
  - Indicate "direct influence" between variables
  - Formally: encode conditional independence (more later)





Weather



#### **Example: Coin Flips**

N independent coin flips









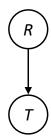


No interactions between variables: absolute independence

### Example: Traffic

- Variables:
  - R: It rains
  - T: There is traffic






■ Model 1: independence



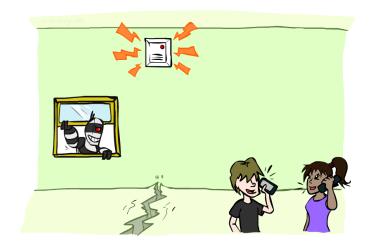


Model 2: rain causes traffic



Why is an agent using model 2 better?

### Example: Traffic II


- Let's build a causal graphical model!
- Variables
  - T: Traffic
  - R: It rains
  - L: Low pressure
  - D: Roof drips
  - B: Ballgame
  - C: Cavity



# Example: Alarm Network

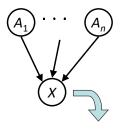
#### Variables

- B: Burglary
- A: Alarm goes off
- M: Mary calls
- J: John calls
- E: Earthquake!



# Bayes' Net Semantics




### Bayes' Net Semantics



- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
  - A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1\ldots a_n)$$

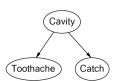
- CPT: conditional probability table
- Description of a noisy "causal" process



 $P(X|A_1 \dots A_n)$ 

A Bayes net = Topology (graph) + Local Conditional Probabilities

#### Probabilities in BNs




- Bayes' nets implicitly encode joint distributions
  - As a product of local conditional distributions
  - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Example:





P(+cavity, +catch, -toothache)

#### Probabilities in BNs



Why are we guaranteed that setting

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i|parents(X_i))$$

results in a proper joint distribution?

• Chain rule (valid for all distributions): 
$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | x_1 \dots x_{i-1})$$

• Assume conditional independences: 
$$P(x_i|x_1,...x_{i-1}) = P(x_i|parents(X_i))$$

→ Consequence: 
$$P(x_1, x_2, ... x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

- Not every BN can represent every joint distribution
  - The topology enforces certain conditional independencies

### **Example: Coin Flips**



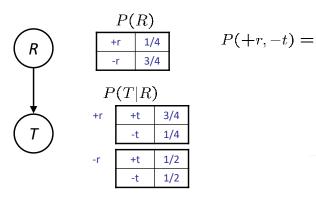


. . .



| $P(X_1)$ |     |  |
|----------|-----|--|
| h        | 0.5 |  |
| t        | 0.5 |  |

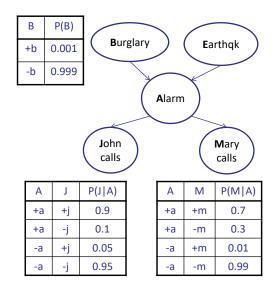
$$P(X_2)$$
h 0.5
t 0.5


. . .

$$P(X_n)$$
h 0.5
t 0.5



$$P(h, h, t, h) =$$


### **Example: Traffic**



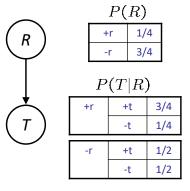




### Example: Alarm Network



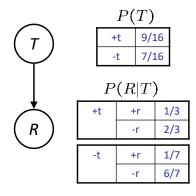
| Е  | P(E)  |
|----|-------|
| +e | 0.002 |
| -е | 0.998 |


| В  | Е  | Α  | P(A B,E) |
|----|----|----|----------|
| +b | +e | +a | 0.95     |
| +b | +e | -a | 0.05     |
| +b | -e | +a | 0.94     |
| +b | -e | -a | 0.06     |
| -b | +e | +a | 0.29     |
| -b | +e | -a | 0.71     |
| -b | -е | +a | 0.001    |
| -b | -е | -a | 0.999    |

### Example: Traffic

#### Causal direction








| P(T,R) |    |      |  |
|--------|----|------|--|
| +r     | +t | 3/16 |  |
| +r     | -t | 1/16 |  |
| -r     | +t | 6/16 |  |
| -r     | -t | 6/16 |  |

# Example: Reverse Traffic

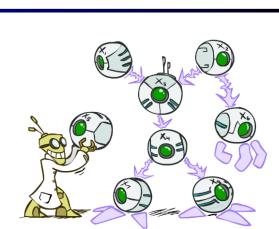
#### Reverse causality?

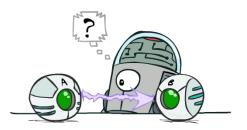




P(T,R)

| +r | +t | 3/16 |
|----|----|------|
| +r | -t | 1/16 |
| -r | +t | 6/16 |
| -r | -t | 6/16 |


#### Causality?


- When Bayes' nets reflect the true causal patterns:
  - Often simpler (nodes have fewer parents)
  - Often easier to think about
  - Often easier to elicit from experts
- BNs need not actually be causal
  - Sometimes no causal net exists over the domain (especially if variables are missing)
  - E.g. consider the variables *Traffic* and *Drips*
  - End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
  - Topology may happen to encode causal structure
  - Topology really encodes conditional independence

$$P(x_i|x_1, \dots x_{i-1}) = P(x_i|parents(X_i))$$



- So far: how a Bayes' net encodes a joint distribution
- Next: how to answer queries about that distribution
  - Today:
    - First assembled BNs using an intuitive notion of conditional independence as causality
    - Then saw that key property is conditional independence
  - Main goal: answer queries about conditional independence and influence
- After that: how to answer numerical queries (inference)



