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Probabilistic Models

� Models describe how (a portion of) the world works

� Models are always simplifications

� May not account for every variable

� May not account for all interactions between variables

� “All models are wrong; but some are useful.”
– George E. P. Box

� What do we do with probabilistic models?

� We (or our agents) need to reason about unknown 
variables, given evidence

� Example: explanation (diagnostic reasoning)

� Example: prediction (causal reasoning)

� Example: value of information

Independence

� Two variables are independent if:

� This says that their joint distribution factors into a product two 
simpler distributions

� Another form:

� We write: 

� Independence is a simplifying modeling assumption

� Empirical joint distributions: at best “close” to independent

� What could we assume for {Weather, Traffic, Cavity, Toothache}?

Independence



Example: Independence?

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T W P

hot sun 0.3

hot rain 0.2

cold sun 0.3

cold rain 0.2

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.4

Example: Independence

� N fair, independent coin flips:

H 0.5

T 0.5

H 0.5

T 0.5

H 0.5

T 0.5

Conditional Independence

� P(Toothache, Cavity, Catch)

� If I have a cavity, the probability that the probe catches in it 
doesn't depend on whether I have a toothache:

� P(+catch | +toothache, +cavity) = P(+catch | +cavity)

� The same independence holds if I don’t have a cavity:

� P(+catch | +toothache, -cavity) = P(+catch| -cavity)

� Catch is conditionally independent of Toothache given Cavity:

� P(Catch | Toothache, Cavity) = P(Catch | Cavity)

� Equivalent statements:

� P(Toothache | Catch , Cavity) = P(Toothache | Cavity)

� P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)

� One can be derived from the other easily

Conditional Independence

� Unconditional (absolute) independence very rare (why?)

� Conditional independence is our most basic and robust form 
of knowledge about uncertain environments.

� X is conditionally independent of Y given Z

if and only if:

or, equivalently, if and only if



Conditional Independence

� What about this domain:

� Traffic

� Umbrella

� Raining

Conditional Independence

� What about this domain:

� Fire

� Smoke

� Alarm

Conditional Independence and the Chain Rule

� Chain rule: 

� Trivial decomposition:

� With assumption of conditional independence:

� Bayes’nets / graphical models help us express conditional independence assumptions

Ghostbusters Chain Rule

� Each sensor depends only
on where the ghost is

� That means, the two sensors are 
conditionally independent, given the 
ghost position

� T: Top square is red
B: Bottom square is red
G: Ghost is in the top

� Givens:

P( +g ) = 0.5

P( -g ) = 0.5

P( +t  | +g ) = 0.8
P( +t  | -g ) = 0.4
P( +b | +g ) = 0.4
P( +b |  -g ) = 0.8

P(T,B,G) = P(G) P(T|G) P(B|G)

T B G P(T,B,G)

+t +b +g 0.16

+t +b -g 0.16

+t -b +g 0.24

+t -b -g 0.04

-t +b +g 0.04

-t +b -g 0.24

-t -b +g 0.06

-t -b -g 0.06



Bayes’Nets: Big Picture Bayes’ Nets: Big Picture

� Two problems with using full joint distribution tables 
as our probabilistic models:

� Unless there are only a few variables, the joint is WAY too 
big to represent explicitly

� Hard to learn (estimate) anything empirically about more 
than a few variables at a time

� Bayes’ nets: a technique for describing complex joint 
distributions (models) using simple, local 
distributions (conditional probabilities)

� More properly called graphical models

� We describe how variables locally interact

� Local interactions chain together to give global, indirect 
interactions

� For about 10 min, we’ll be vague about how these 
interactions are specified

Example Bayes’ Net: Insurance Example Bayes’ Net: Car



Graphical Model Notation

� Nodes: variables (with domains)

� Can be assigned (observed) or unassigned 
(unobserved)

� Arcs: interactions

� Similar to CSP constraints

� Indicate “direct influence” between variables

� Formally: encode conditional independence 
(more later)

� For now: imagine that arrows mean 
direct causation (in general, they don’t!)

Example: Coin Flips

� N independent coin flips

� No interactions between variables: absolute independence

X1 X2 Xn

Example: Traffic

� Variables:

� R: It rains

� T: There is traffic

� Model 1: independence

� Why is an agent using model 2 better?

R

T

R

T

� Model 2: rain causes traffic

� Let’s build a causal graphical model!

� Variables

� T: Traffic

� R: It rains

� L: Low pressure

� D: Roof drips

� B: Ballgame

� C: Cavity

Example: Traffic II



Example: Alarm Network

� Variables

� B: Burglary

� A: Alarm goes off

� M: Mary calls

� J: John calls

� E: Earthquake!

Bayes’ Net Semantics

Bayes’ Net Semantics

� A set of nodes, one per variable X

� A directed, acyclic graph

� A conditional distribution for each node

� A collection of distributions over X, one for each 
combination of parents’ values

� CPT: conditional probability table

� Description of a noisy “causal” process

A1

X

An

A Bayes net = Topology (graph) + Local Conditional Probabilities

Probabilities in BNs

� Bayes’ nets implicitly encode joint distributions

� As a product of local conditional distributions

� To see what probability a BN gives to a full assignment, multiply all the 
relevant conditionals together:

� Example:



Probabilities in BNs

� Why are we guaranteed that setting

results in a proper joint distribution?  

� Chain rule (valid for all distributions): 

� Assume conditional independences: 

Æ Consequence:

� Not every BN can represent every joint distribution

� The topology enforces certain conditional independencies

Only distributions whose variables are absolutely independent can be 
represented by a Bayes’ net with no arcs.

Example: Coin Flips

h 0.5

t 0.5

h 0.5

t 0.5

h 0.5

t 0.5

X1 X2 Xn

Example: Traffic

R

T

+r 1/4

-r 3/4

+r +t 3/4

-t 1/4

-r +t 1/2

-t 1/2

Example: Alarm Network

Burglary Earthqk

Alarm

John 

calls

Mary 

calls

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95

+b +e -a 0.05

+b -e +a 0.94

+b -e -a 0.06

-b +e +a 0.29

-b +e -a 0.71

-b -e +a 0.001

-b -e -a 0.999

A J P(J|A)

+a +j 0.9

+a -j 0.1

-a +j 0.05

-a -j 0.95

A M P(M|A)

+a +m 0.7

+a -m 0.3

-a +m 0.01

-a -m 0.99



Example: Traffic

� Causal direction

R

T

+r 1/4

-r 3/4

+r +t 3/4

-t 1/4

-r +t 1/2

-t 1/2

+r +t 3/16

+r -t 1/16

-r +t 6/16

-r -t 6/16

Example: Reverse Traffic

� Reverse causality?

T

R

+t 9/16

-t 7/16

+t +r 1/3

-r 2/3

-t +r 1/7

-r 6/7

+r +t 3/16

+r -t 1/16

-r +t 6/16

-r -t 6/16

Causality?

� When Bayes’ nets reflect the true causal patterns:

� Often simpler (nodes have fewer parents)

� Often easier to think about

� Often easier to elicit from experts

� BNs need not actually be causal

� Sometimes no causal net exists over the domain 
(especially if variables are missing)

� E.g. consider the variables Traffic and Drips
� End up with arrows that reflect correlation, not causation

� What do the arrows really mean?

� Topology may happen to encode causal structure

� Topology really encodes conditional independence

Bayes’ Nets

� So far: how a Bayes’ net encodes a joint 
distribution

� Next: how to answer queries about that 
distribution

� Today: 

� First assembled BNs using an intuitive notion of 
conditional independence as causality

� Then saw that key property is conditional independence

� Main goal: answer queries about conditional 
independence and influence 

� After that: how to answer numerical queries 
(inference)


