CS 188: Artificial Intelligence

Bayes' Nets

Instructors: Dan Klein and Pieter Abbeel --- University of California, Berkeley [These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Probabilistic Models

- Models describe how (a portion of) the world works
- Models are always simplifications
 - May not account for every variable
 - May not account for all interactions between variables
 - "All models are wrong; but some are useful."
 George E. P. Box

- What do we do with probabilistic models?
 We (or our agents) need to reason about unknown variables, given evidence
 Example: explanation (diagnostic reasoning)

 - Example: prediction (causal reasoning)Example: value of information

Independence

Independence

• Two variables are independent if:

$$\forall x, y : P(x, y) = P(x)P(y)$$

- This says that their joint distribution *factors* into a product two simpler distributions
- Another form:

$$\forall x, y : P(x|y) = P(x)$$

lacktriangledown We write: $X \! \perp \!\!\! \perp \!\!\! \perp \!\!\! Y$

- Empirical joint distributions: at best "close" to independent
- What could we assume for {Weather, Traffic, Cavity, Toothache}?

Example: Independence?

$P_1(T,W)$			
Т	w	Р	
hot	sun	0.4	
hot	rain	0.1	
cold	sun	0.2	
cold	rain	0.3	

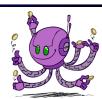
	P(T)	
	T	Р
	hot	0.5
	cold	0.5
Р		

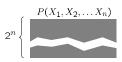
P(W)		
W	Р	
sun	0.6	
rain	0.4	

$P_2(T,W)$			
T	W	Р	
hot	sun	0.3	
hot	rain	0.2	
cold	sun	0.3	
cold	rain	0.2	

Example: Independence

• N fair, independent coin flips:





Conditional Independence

- P(Toothache, Cavity, Catch)
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
 P(+catch | +toothache, +cavity) = P(+catch | +cavity)
- The same independence holds if I don't have a cavity:
 - P(+catch | +toothache, -cavity) = P(+catch | -cavity)
- Catch is conditionally independent of Toothache given Cavity:

 P(Catch | Toothache, Cavity) = P(Catch | Cavity)

- P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
 P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
- One can be derived from the other easily

Conditional Independence

- Unconditional (absolute) independence very rare (why?)
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.
- X is conditionally independent of Y given Z

 $X \perp \!\!\! \perp Y | Z$

if and only if:

 $\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$

or, equivalently, if and only if

 $\forall x, y, z : P(x|z, y) = P(x|z)$

Conditional Independence

- What about this domain:
 - Traffic
 - Umbrella
 - Raining

Conditional Independence

- What about this domain:
 - Fire
 - Smoke
 - Alarm

Conditional Independence and the Chain Rule

- $P(X_1, X_2, ... X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)...$ Chain rule:
- Trivial decomposition:

 $P(\mathsf{Traffic}, \mathsf{Rain}, \mathsf{Umbrella}) =$ P(Rain)P(Traffic|Rain)P(Umbrella|Rain, Traffic)

• With assumption of conditional independence:

P(Traffic, Rain, Umbrella) =P(Rain)P(Traffic|Rain)P(Umbrella|Rain)

Bayes'nets / graphical models help us express conditional independence assumptions

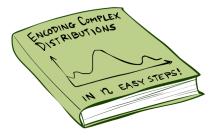
Ghostbusters Chain Rule

- Each sensor depends only on where the ghost is
- That means, the two sensors are conditionally independent, given the ghost position
- T: Top square is red B: Bottom square is red G: Ghost is in the top
- Givens: P(+g) = 0.5 P(-g) = 0.5 P(+t | +g) = 0.8 P(+t | -g) = 0.4 P(+b | +g) = 0.4 P(+b | -g) = 0.8

P(T,B,G) +b 0.16 +t +g +t +b 0.16 -g +t -b +g 0.24 +t -h 0.04 -g -t +b 0.04 +g -t +b 0.24 -g -t -b 0.06 +g 0.06

P(T,B,G) = P(G) P(T|G) P(B|G)

Bayes'Nets: Big Picture

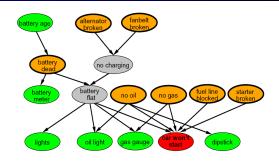


Bayes' Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
 - Unless there are only a few variables, the joint is WAY too big to represent explicitly
 - Hard to learn (estimate) anything empirically about more than a few variables at a time
- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
- More properly called graphical models
 We describe how variables locally interact
- Local interactions chain together to give global, indirect interactions
 For about 10 min, we'll be vague about how these interactions are specified

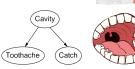
Example Bayes' Net: Insurance

Example Bayes' Net: Car



Graphical Model Notation

- Nodes: variables (with domains)
 - Can be assigned (observed) or unassigned (unobserved)
- Arcs: interactions
 - Similar to CSP constraints
 - Indicate "direct influence" between variables Formally: encode conditional independence (more later)
- For now: imagine that arrows mean direct causation (in general, they don't!)



N independent coin flips

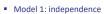
Example: Coin Flips

• No interactions between variables: absolute independence

Example: Traffic

■ Model 2: rain causes traffic

- Variables:
 - R: It rains
 - T: There is traffic



Why is an agent using model 2 better?

Example: Traffic II

- Let's build a causal graphical model!
- Variables
 - T: TrafficR: It rains

 - L: Low pressureD: Roof drips
 - B: Ballgame
 - C: Cavity

Example: Alarm Network

- Variables
 - B: Burglary
 - A: Alarm goes off
 - M: Mary calls
 - J: John calls
 - E: Earthquake!

Bayes' Net Semantics

Bayes' Net Semantics

- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1 \dots a_n)$$

- CPT: conditional probability table
- Description of a noisy "causal" process

 $P(X|A_1 \dots A_n)$

Probabilities in BNs

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

 $P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$

Example:

P(+cavity, +catch, -toothache)

Probabilities in BNs

• Why are we guaranteed that setting

$$P(x_1,x_2,\dots x_n) = \prod_{i=1}^n P(x_i|\textit{parents}(X_i))$$
 results in a proper joint distribution?

 $P(x_1, x_2, \dots x_n) = \prod_{i=1}^{n} P(x_i | x_1 \dots x_{i-1})$ • Chain rule (valid for all distributions):

• Assume conditional independences: $P(x_i|x_1, \dots x_{i-1}) = P(x_i|parents(X_i))$

 \rightarrow Consequence: $P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$

Not every BN can represent every joint distribution

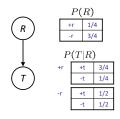
The topology enforces certain conditional independencies

Example: Coin Flips

P(h, h, t, h) =

Only distributions whose variables are absolutely independent can be represented by a Bayes' net with no arcs.

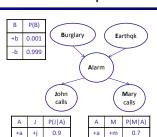
Example: Traffic



Example: Alarm Network

0.3

0.01



0.1

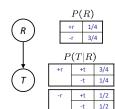
0.05

		_	
Е	P(E)	
+e	0.00	2	
-е	0.99	8	
В	Е	Α	P(/
+b	+e	+a	(

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-е	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-е	+a	0.001
-b	-е	-a	0.999

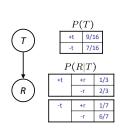
Example: Traffic

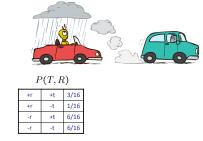
Causal direction



Example: Reverse Traffic

Reverse causality?





Bayes' Nets Causality?

- When Bayes' nets reflect the true causal patterns:
 - Often simpler (nodes have fewer parents)
 Often easier to think about
 Often easier to elicit from experts

BNs need not actually be causal

- Sometimes no causal net exists over the domain (especially if variables are missing)
 E.g. consider the variables *Traffic* and *Drips* End up with arrows that reflect correlation, not causation

- What do the arrows really mean?

 - Topology may happen to encode causal structure
 Topology really encodes conditional independence

 $P(x_i|x_1, \dots x_{i-1}) = P(x_i|parents(X_i))$

So far: how a Bayes' net encodes a joint distribution

- Next: how to answer queries about that distribution

 - Today:
 First assembled BNs using an intuitive notion of conditional independence as causality
 Then saw that key property is conditional independence
 Main goal: answer queries about conditional independence and influence
- After that: how to answer numerical queries (inference)

