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Probability Recap

Conditional probability P(zly) = Pz,y)
P(y)
Product rule P(z,y) = P(z|y)P(y)
Chain rule P(X1,X0,...Xn) = P(X1)P(X5|X1)P(X3]|X1,X2)...
= H P(XilXL - ,Xl-,l)
i=1

X, Yindependent if and only if:  Vz,y : P(x,y) = P(z)P(y)

X and Y are conditionally independent given Z if and only if:

Ve,y,z: P(eylz) = P(el)P(ylz) X 1LY|Z



Bayes’ Nets

= A Bayes’ netis an
efficient encoding
of a probabilistic
model of a domain

= Questions we can ask:
= |nference: given a fixed BN, what is P(X | e)?

= Representation: given a BN graph, what kinds of distributions can it encode?

= Modeling: what BN is most appropriate for a given domain?

Bayes’ Net Semantics

= Adirected, acyclic graph, one node per random variable

= A conditional probability table (CPT) for each node

= A coIIectiop of distributions over X, one for each combination
of parents values

P(X|(J,]_ e a/n,)
» Bayes’ nets implicitly encode joint distributions
= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment,
multiply all the relevant conditionals together:

n
P(:Ijl, Dy ... J}n) = H P(wi|parents(X.l-))
=1




Example: Alarm Network
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Size of a Bayes’' Net

= How big is a joint distribution over N = Both give you the power to calculate

Boolean variables?
N P(Xq1,Xo,...Xn)
= BNSs: Huge space savings!

= How bigis an N-node net if nodes
have up to k parents?

O(N * 2k+1) = Also faster to answer queries (coming)

= Also easier to elicit local CPTs

Bayes’ Nets

JRepresentation
= Conditional Independences
= Probabilistic Inference

" Learning Bayes’ Nets from Data



Conditional Independence

X and Y are independent if

Ve,y P(z,y) = P(z)P(y) ---= X1Y

X and Y are conditionally independent given Z

Vz,y,z P(z,y|z) = P(z[z)P(ylz) ---=> X 1Y|Z

(Conditional) independence is a property of a distribution

Example: Alarm 1 Fire|Smoke

Bayes Nets: Assumptions

Assumptions we are required to make to define the
Bayes net when given the graph:

P(zi|zy - 2i1) = P(zi|parents(X;))

Beyond above “chain rule > Bayes net” conditional
independence assumptions

= Often additional conditional independences

= They can be read off the graph

Important for modeling: understand assumptions made
when choosing a Bayes net graph




Example

O~ (—W

= Conditional independence assumptions directly from simplifications in chain rule:

= Additional implied conditional independence assumptions?

Independence in a BN

= |Important question about a BN:
= Are two nodes independent given certain evidence?
= |f yes, can prove using algebra (tedious in general)
= |f no, can prove with a counter example

= Example:

Question: are X and Z necessarily independent?
= Answer: no. Example: low pressure causes rain, which causes traffic.
= X can influence Z, Z can influence X (via Y)
= Addendum: they could be independent: how?



D-separation: Outline
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D-separation: Outline

= Study independence properties for triples

= Analyze complex cases in terms of member triples

= D-separation: a condition / algorithm for answering such
qgueries



Causal Chains

= This configuration is a “causal chain” * Guaranteed X independentof Z? No!

= One example set of CPTs for which X is not

e =ad independent of Z is sufficient to show this
T“} ////// ‘Af_’! independence is not guaranteed.
/ = Example:
a W\\“J w = Low pressure causes rain causes traffic,
< high pressure causes no rain causes no
traffic
X: Low pressure Y: Rain Z: Traffic

= |n numbers:

— P(+y | +x)=1,P(-y |-x)=1,
P(2.y.2) = P(@)P(y]2)P(=Iy) Py ) =3Py |
Causal Chains
= This configuration is a “causal chain” * Guaranteed X independent of Z given Y?

) .. 2
SO eaaE P(zmy):iplﬁ(j;))

Vi | _ P@PQln)PCGIY)

X: Low pressure Y: Rain Z: Traffic = P(Z|y)

Yes!

P(w,y,2) = P(2)P(yl2) P(z]y) = Evidence along the chain “blocks” the

influence



Common Cause

. . . . “ ”
= This configuration is a “common cause

Y: Project Froject
Due!
due —

Z: Lab full

P(z,y,2) = P(y)P(z|y) P(z|y)

Guaranteed X independent of Z? No!

= One example set of CPTs for which X is not
independent of Z is sufficient to show this
independence is not guaranteed.

= Example:

= Project due causes both forums busy
and lab full

= |n numbers:

P(+x | +y)=1,P(x|-y)
P(+z|+y)=1,P(-z|-y)

Common Cause

. . . . “ ”
= This configuration is a “common cause

Y: Project Froject
Due!
due —
@

@%
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8
X: I;zr;;ms ,E g

P(z,y,2) = P(y)P(z|y) P(z|y)

B

=
1S
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Z: Lab full

T

Guaranteed X and Z independent given Y?

P(z,y,z)
P(z,y)

_ PQ)P(zly) P(z]y)
P(y)P(z|y)

P(z|lz,y) =

= P(z|y)
Yes!

= Observing the cause blocks influence
between effects.



Common Effect

= Last configuration: two causes of one = Are X and Y independent?

effect (V_Strucwres) = Yes: the ballgame and the rain cause traffic, but

. they are not correlated
X: Raining Y: Ballgame

= Still need to prove they must be (try it!)

= Are X and Y independent given Z?

= No: seeing traffic puts the rain and the ballgame in
competition as explanation.

= This is backwards from the other cases

= Observing an effect activates influence between
Z: Traffic Y .
asl possible causes.

The General Case




The General Case

= General question: in a given BN, are two variables independent
(given evidence)?

= Solution: analyze the graph

= Any complex example can be broken PAA
into repetitions of the three canonical cases @% %
> Y

Reachability

= Recipe: shade evidence nodes, look 0
for paths in the resulting graph

= Attempt 1: if two nodes are connected e G
by an undirected path not blocked by
a shaded node, they are conditionally

independent
e @ @

= Almost works, but not quite } I, Y
s N L T /
= Where does it break? L‘ﬁj/{kf R St — ,7,})
= Answer: the v-structure at T doesn’t count Ny // ay [] / / /

as a link in a path unless “active”




Active / Inactive Paths

= Question: Are X and Y conditionally independent given
evidence variables {Z}?
* Yes, if Xand Y “d-separated” by Z
= Consider all (undirected) paths from Xto Y
= No active paths = independence!

= A path is active if each triple is active:
= Causal chain A— B — C where B is unobserved (either direction)
= Common cause A <~ B — C where B is unobserved
= Common effect (aka v-structure)
A — B < C where B or one of its descendents is observed

= All it takes to block a path is a single inactive segment

Active Triples Inactive Triples

0~0-0
oo
o

~{q 2t

D-Separation

= Query: X, 1L Xj‘{Xkla 7Xk3n}

?

= Check all (undirected!) paths between X; and X

= |f one or more active, then independence not guaranteed

Xi WX Xnys s X, }

= QOtherwise (i.e. if all paths are inactive),
then independence is guaranteed

X X5 { Xk s, Xk, }



Example

RILB Yes
R B|T
R B|T'
Example

LUTT Yes
L1 B Yes
L1 B|T
L1 B|T
LI B|T,R Yes



Example

= Variables:
= R: Raining
= T: Traffic e
= D: Roof drips

= S:I'm sad @ Q

= Questions:

T1D
T1 D|R Yes
T1.D|R, S

Structure Implications

= Given a Bayes net structure, can run d-
separation algorithm to build a complete list of
conditional independences that are necessarily
true of the form

X X { Xy oo, Xk, }

= This list determines the set of probability
distributions that can be represented




Computing All Independences

MPUTE ALL THE
C\'RDEPE\QDE NCES!

R
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Topology Limits Distributions

Given some graph topolo FTLY.XLZYLZ
Erapntopology v | z1vxuv|zy uz|x

G, only certain joint
distributions can be @

encoded @ @

The graph structure
guarantees certain
(conditional) independences

(X1 Zz|Y}

(There might be more
independence)

Adding arcs increases the
set of distributions, but has
several costs

Full conditioning can encode
any distribution

PP
P ap-
PP PFP



Bayes Nets Representation Summary

Bayes nets compactly encode joint distributions

Guaranteed independencies of distributions can be
deduced from BN graph structure

D-separation gives precise conditional independence
guarantees from graph alone

A Bayes’ net’ s joint distribution may have further
(conditional) independence that is not detectable until
you inspect its specific distribution

Bayes’ Nets

JRepresentation
JConditionaI Independences

= Probabilistic Inference
* Enumeration (exact, exponential complexity)
= Variable elimination (exact, worst-case
exponential complexity, often better)
= Probabilistic inference is NP-complete
= Sampling (approximate)

= Learning Bayes’ Nets from Data



