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Bayes’ Nets
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= Questions we can ask:
= Inference: given a fixed BN, what is P(X | e)?
= Representation: given a BN graph, what kinds of distributions can it encode?

= Modeling: what BN is most appropriate for a given domain?

P(z,y)
P(y)

P(z,y) = P(x|y)P(y)

Conditional probability P(zly) =

Product rule

Chain rule P(X1,X2,...Xn) = P(X1)P(X2|X1)P(X3|X1,X2)...
n

Il PCxiIXq, . X0)
i=1

X, Yindependent if and only if:  Vz,y: P(z,y) = P(z)P(y)

X and Y are conditionally independent given Z if and only if:

Va,y,z : P(z,y|z) = P(z]2) P(y|2)

Bayes’ Net Semantics

X1Y|Z

= Adirected, acyclic graph, one node per random variable
= A conditional probability table (CPT) for each node

= A coIIectiop of distributions over X, one for each combination
of parents’ values

P(Xlay...an)
= Bayes nets implicitly encode joint distributions
= As a product of local conditional distributions
= To see what probability a BN gives to a full assignment,

multiply all the relevant conditionals together:

P(z1,x0,...2n) = ﬁ P(z;|parents(X;))
i=1




Example: Alarm Network

Example: Alarm Network
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Size of a Bayes Net
= How big is a joint distribution over N = Both give you the power to calculate
Boolean variables?
P(X1,X2,...Xn)

2N

= How bigis an N-node net if nodes

= BNs: Huge space savings!

have up to k parents?

O(N * 2k+1)

= Also easier to elicit local CPTs

= Also faster to answer queries (coming)

JRepresentation
= Conditional Independences
= Probabilistic Inference

= Learning Bayes’ Nets from Data




Conditional Independence Bayes Nets: Assumptions

X andY are independent if = Assumptions we are required to make to define the
Bayes net when given the graph:

Vz,y P(z,y) = P(z)P(y) ---= X1Y P(zi|ty - i1) = Plwi|parents(X:))
= XandY are conditiona”y independent given VA = Beyond above “chain rule > Bayes net” conditional
independence assumptions
VIE, Y,z P(.I, y\z) = P(x|z)P(y|z) i XlLYlZ = Often additional conditional independences
* (Conditional) independence is a property of a distribution * They can be read off the graph
= Important for modeling: understand assumptions made
L] Example: Alarm L Fire|Smoke when choosing a Bayes net graph
Example Independence in a BN

= |mportant question about a BN:
—| ——| ——|
= Are two nodes independent given certain evidence?

= |f yes, can prove using algebra (tedious in general)
= If no, can prove with a counter example

= Example:

= Question: are X and Z necessarily independent?
= Answer: no. Example: low pressure causes rain, which causes traffic.
= X can influence Z, Z can influence X (via Y)
= Addendum: they could be independent: how?

= Conditional independence assumptions directly from simplifications in chain rule:

= Additional implied conditional independence assumptions?



D-separation: Outline D-separation: Outline

= Study independence properties for triples

= Analyze complex cases in terms of member triples

= D-separation: a condition / algorithm for answering such
queries

Causal Chains Causal Chains

= This configuration is a “causal chain” = Guaranteed X independent of Z? No! = This configuration is a “causal chain” = Guaranteed X independent of Z given Y?

= One example set of CPTs for which X is not

) independent of Z is sufficient to show this " o0
////// & independence is not guaranteed. ////// & P(z|m, y) = %
= Example:

é L‘/‘V» W = Low pressure causes rain causes traffic, é k/"‘/» W _ P(x)P(ylz)P(z|y)
< high pressure causes no rain causes no - P(z)P(ylz)
traffic
X: Low pressure Y: Rain Z: Traffic X: Low pressure Y: Rain Z: Traffic = P(2|y)
= In numbers:
P(+y | 4x) =1, P(-y | -x) =1 Yes!
Plwy,2) = P@Pl)PGly) P(+z|+y)= 1: P(-z|-y)= 1 P,y 2) = P@)PQyl2)P(zly) * Evidence along the chain “blocks” the

influence



Common Cause

= This configuration is a “common cause” = Guaranteed X independent of Z? No!

= One example set of CPTs for which X is not
independent of Z is sufficient to show this

independence is not guaranteed.
@ = Example:
>

%XVL = Project due causes both forums busy

and lab full
@; = |In numbers:
@? & Z: Lab full

P(z,y,z) = P(y)P(z|y) P(zly)

Y: Project Project
Due!
due

X: Forums f
busy P(+x | +y)=1,P(x|-y)=1,

P(+#z | +y)=1,P(-z|y)=

wig,

Common Effect

Common Cause

= Last configuration: two causes of one = Are X and Y independent?

ff v-str r
effect (v-structures) = Yes: the ballgame and the rain cause traffic, but

. they are not correlated
X: Raining Y: Ballgame

@ @ = No: seeing traffic puts the rain and the ballgame in
AE{/‘ Jf%‘? competition as explanation.

@ = This is backwards from the other cases
<

F = Observing an effect activates influence between

Z:Traffic | ¢ ’f'!
L.__,w

= Still need to prove they must be (try it!)

= Are XandY independent given Z?

possible causes.

= This configuration is a “common cause”

Y: Project Project
Due!
due

o

D,
FB| o

P(z,y,z) = P(y)P(z|y) P(zly)

X: Forums f
busy

wig,

= Guaranteed X and Z independent given Y?

PGelay) = Tt

_ P)P(zly)P(zly)
P(y)P(z|y)

= P(zly)
Yes!

= QObserving the cause blocks influence
between effects.

The General Case




The General Case Reachability

= Recipe: shade evidence nodes, look 0

= General question: in a given BN, are two variables independent for paths in the resulting graph

(given evidence)?

= Attempt 1: if two nodes are connected G e
by an undirected path not blocked by
a shaded node, they are conditionally

independent
e @ @

= Almost works, but not quite P N
* Where does it break? =~ 3 )

= Answer: the v-structure at T doesn’t count /]
as a link in a path unless “active” —

= Solution: analyze the graph

= Any complex example can be broken
into repetitions of the three canonical cases

Active / Inactive Paths D-Separation

= Question: Are X and Y conditionally independent given ~ Active Triples Inactive Triples = Query: X, 1l X, | {Xk: ooy Xk } ?
evidence variables {Z}? ¢ J 170 n

= Yes, if Xand Y “d-separated” by Z
= Consider all (undirected) paths from X to Y

= No active paths = independence!

= Check all (undirected!) paths between X; and X

O/O\O = |f one or more active, then independence not guaranteed

= A pathis active if each triple is active:
= Causal chain A— B — C where B is unobserved (either direction)
= Common cause A <~ B — C where B is unobserved
= Common effect (aka v-structure)
A — B « C where B or one of its descendents is observed

Xi NX;{ Xk X, } B
= QOtherwise (i.e. if all paths are inactive), @ 7 %
X

then independence is guaranteed

Xi WX { Xk, Xy } %@%@
@&

= All it takes to block a path is a single inactive segment

~3k

~{q 2



Example Example

RIB Yes Q @ LIT|T Yes
OO

R B|T L1B Yes
R B|T' (1) LALB|T
L1 B|T Q 0
() L1 B|T,R Yes %
Example Structure Implications
= Variables: = Given a Bayes net structure, can run d-

. separation algorithm to build a complete list of
= R: Raining o . )
e conditional independences that are necessarily
true of the form

= T: Traffic
= D: Roof drips
= S:I'm sad G Q X¢J.|.Xj|{Xk1,...,an}
= Questions:
G = This list determines the set of probability
TI1D o
distributions that can be represented

T D|R Yes
TUD|R,S



Computing All Independences Topology Limits Distributions

. (XLY,XULZYLZ
C,OMPUTE AL'—- THE distributions can be ®
\ NDEPENDE NCES/ encoded ® @

= The graph structure
guarantees certain
(conditional) independences

= (There might be more
independence)

= Adding arcs increases the {}
set of distributions, but has
several costs

= Full conditioning can encode
—| any distribution

PP PP

P
P

Bayes Nets Representation Summary Bayes’ Nets

= Bayes nets compactly encode joint distributions JRepresentation

JConditionaI Independences

Guaranteed independencies of distributions can be

deduced from BN graph structure = Probabilistic Inference
= Enumeration (exact, exponential complexity)
= D-separation gives precise conditional independence = Variable elimination (exact, worst-case

guarantees from graph alone
exponential complexity, often better)

= ABayes’ net’sjoint distribution may have further ® Probabilistic inference is NP-complete

(conditional) independence that is not detectable until = Sampling (approximate)

you inspect its specific distribution . ,
= Learning Bayes’ Nets from Data



