CS 188: Artificial Intelligence

Bayes' Nets: Independence

Instructors: Pieter Abbeel & Dan Klein --- University of California, Berkeley [These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Probability Recap

- Conditional probability $P(x|y) = \frac{P(x,y)}{P(y)}$
- Product rule P(x,y) = P(x|y)P(y)
- Chain rule $P(X_1, X_2, \dots, X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)\dots$ $= \prod_{i=1}^n P(X_i|X_1, \dots, X_{i-1})$
- X, Y independent if and only if: $\forall x, y : P(x, y) = P(x)P(y)$
- X and Y are conditionally independent given Z if and only if:

$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z) \qquad X \perp Y|Z$$

Bayes' Nets

- A Bayes' net is an efficient encoding of a probabilistic model of a domain
- A Contract of the second secon
- Questions we can ask:
 - Inference: given a fixed BN, what is P(X | e)?
 - Representation: given a BN graph, what kinds of distributions can it encode?
 - Modeling: what BN is most appropriate for a given domain?

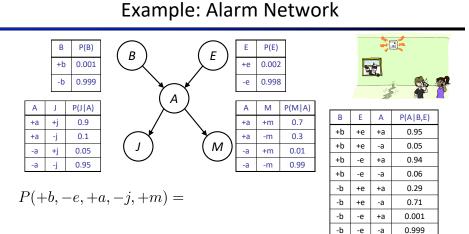
Bayes' Net Semantics

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - A collection of distributions over X, one for each combination of parents' values

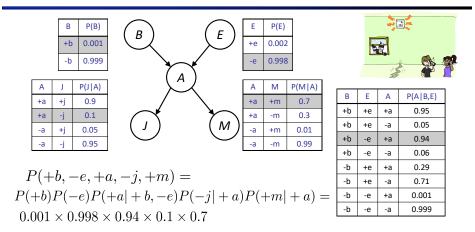
 $P(X|a_1\ldots a_n)$

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

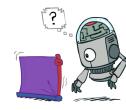


Example: Alarm Network



Size of a Bayes' Net

- How big is a joint distribution over N Boolean variables?
 2^N
- How big is an N-node net if nodes have up to k parents?
 - O(N * 2^{k+1})



- Both give you the power to calculate $P(X_1, X_2, \dots X_n)$
- BNs: Huge space savings!
- Also easier to elicit local CPTs
- Also faster to answer queries (coming)

Bayes' Nets

- Representation
- Conditional Independences
- Probabilistic Inference
- Learning Bayes' Nets from Data

Conditional Independence

• X and Y are independent if

 $\forall x, y \ P(x, y) = P(x)P(y) \dashrightarrow X \bot\!\!\!\bot Y$

• X and Y are conditionally independent given Z

$$\forall x, y, z \ P(x, y|z) = P(x|z)P(y|z) \dashrightarrow X \perp Y|Z$$

- (Conditional) independence is a property of a distribution
- Example:
 - $A larm \bot\!\!\!\bot Fire | Smoke$

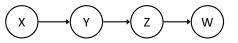
Bayes Nets: Assumptions

 Assumptions we are required to make to define the Bayes net when given the graph:

 $P(x_i|x_1\cdots x_{i-1}) = P(x_i|parents(X_i))$

- Beyond above "chain rule → Bayes net" conditional independence assumptions
 - Often additional conditional independences
 - They can be read off the graph
- Important for modeling: understand assumptions made when choosing a Bayes net graph

Example

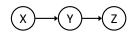


• Conditional independence assumptions directly from simplifications in chain rule:

Additional implied conditional independence assumptions?

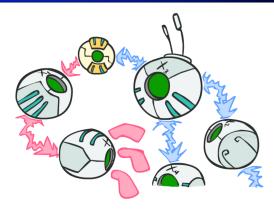
Independence in a BN

- Important question about a BN:
 - Are two nodes independent given certain evidence?
 - If yes, can prove using algebra (tedious in general)
 - If no, can prove with a counter example
 - Example:



- Question: are X and Z necessarily independent?
 Answer: no. Example: low pressure causes rain, which causes traffic.
 - X can influence Z, Z can influence X (via Y)
 - Addendum: they could be independent: how?

D-separation: Outline

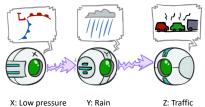


D-separation: Outline

- Study independence properties for triples
- Analyze complex cases in terms of member triples
- D-separation: a condition / algorithm for answering such queries

Causal Chains

• This configuration is a "causal chain"



X: Low pressure Y: Rain

P(x, y, z) = P(x)P(y|x)P(z|y)

- Guaranteed X independent of Z ? No!
 - One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.
 - Example:
 - Low pressure causes rain causes traffic, high pressure causes no rain causes no traffic
 - In numbers:

P(+y | +x) = 1, P(-y | -x) = 1, P(+z | +y) = 1, P(-z | -y) = 1

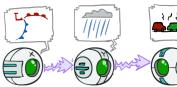
- **Causal Chains**
- This configuration is a "causal chain"
- D/ .\

Guaranteed X independent of Z given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$$
$$= P(x)P(y|x)P(z|y)$$

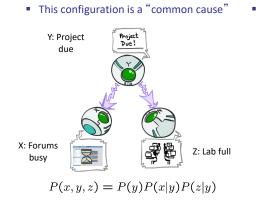
= P(z|y)

- Yes!
- Evidence along the chain "blocks" the influence



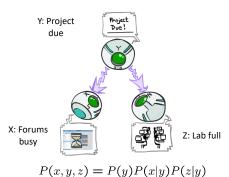
P(x, y, z) = P(x)P(y|x)P(z|y)

Common Cause



- Guaranteed X independent of Z ? No!
 - One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.
 - Example:
 - Project due causes both forums busy and lab full
 - In numbers:
 - P(+x | +y) = 1, P(-x | -y) = 1, P(+z | +y) = 1, P(-z | -y) = 1

- Common Cause
- This configuration is a "common cause" Guaranteed X and Z independent given Y?



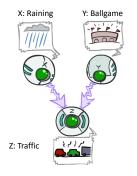
$$= \frac{P(y)P(x|y)P(z|y)}{P(y)P(x|y)}$$
$$= P(z|y)$$
Yes!

 $P(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$

 Observing the cause blocks influence between effects.

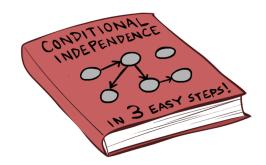
Common Effect

 Last configuration: two causes of one effect (v-structures)



- Are X and Y independent?
 - Yes: the ballgame and the rain cause traffic, but they are not correlated
 - Still need to prove they must be (try it!)
- Are X and Y independent given Z?
 - No: seeing traffic puts the rain and the ballgame in competition as explanation.
- This is backwards from the other cases
 - Observing an effect activates influence between possible causes.

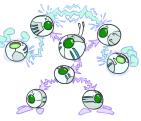
The General Case



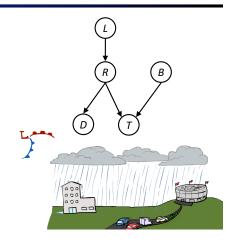
The General Case

Reachability

- General question: in a given BN, are two variables independent (given evidence)?
- Solution: analyze the graph
- Any complex example can be broken into repetitions of the three canonical cases

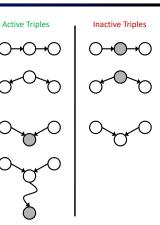


- Recipe: shade evidence nodes, look for paths in the resulting graph
- Attempt 1: if two nodes are connected by an undirected path not blocked by a shaded node, they are conditionally independent
- Almost works, but not quite
 - Where does it break?
 - Answer: the v-structure at T doesn't count as a link in a path unless "active"



Active / Inactive Paths

- Question: Are X and Y conditionally independent given evidence variables {Z}?
 Yes, if X and Y "d-separated" by Z
 - Yes, if X and Y d-separated by Z
 Consider all (undirected) paths from X to Y
 - Consider all (undirected) paths from x
 No active paths = independence!
- A path is active if each triple is active:
 - Causal chain $A \to B \to C$ where B is unobserved (either direction)
 - Common cause $A \leftarrow B \rightarrow C$ where B is unobserved
 - Common effect (aka v-structure)
 - $A \rightarrow B \leftarrow C$ where B or one of its descendents is observed
- All it takes to block a path is a single inactive segment



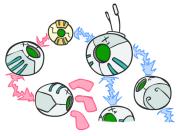
D-Separation

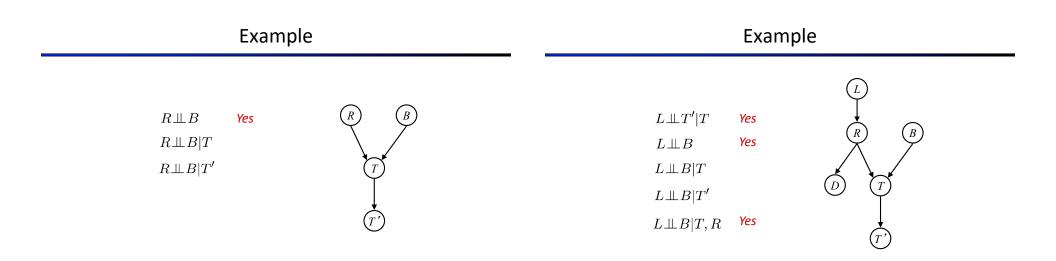
- Query: $X_i \perp \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$?
- Check all (undirected!) paths between X_i and X_j
 - If one or more active, then independence not guaranteed

$$X_i \searrow X_j | \{X_{k_1}, ..., X_{k_n}\}$$

• Otherwise (i.e. if all paths are inactive), then independence is guaranteed

$$X_i \perp\!\!\!\perp X_j | \{X_{k_1}, ..., X_{k_n} |$$





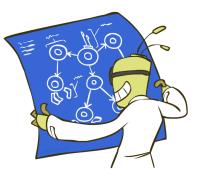
Example

- Variables:
 - R: Raining
 - T: Traffic
 - D: Roof drips
 - S: I'm sad
- Questions:
 - $T \! \perp \! D$
 - $T \perp\!\!\!\perp D | R$ Yes
 - $T \bot\!\!\!\bot D | R, S$

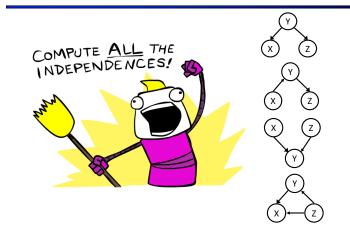
- Structure Implications
- Given a Bayes net structure, can run dseparation algorithm to build a complete list of conditional independences that are necessarily true of the form

$$X_i \perp \!\!\perp X_j | \{X_{k_1}, \dots, X_{k_n}\}$$

• This list determines the set of probability distributions that can be represented

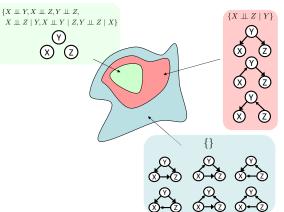


Computing All Independences



Topology Limits Distributions

- Given some graph topology
 G, only certain joint
 distributions can be
 encoded
- The graph structure guarantees certain (conditional) independences
- (There might be more independence)
- Adding arcs increases the set of distributions, but has several costs
- Full conditioning can encode any distribution



Bayes Nets Representation Summary

- Bayes nets compactly encode joint distributions
- Guaranteed independencies of distributions can be deduced from BN graph structure
- D-separation gives precise conditional independence guarantees from graph alone
- A Bayes' net's joint distribution may have further (conditional) independence that is not detectable until you inspect its specific distribution

Bayes' Nets

✓ Representation

- Conditional Independences
- Probabilistic Inference
 - Enumeration (exact, exponential complexity)
 - Variable elimination (exact, worst-case
 - exponential complexity, often better)
 - Probabilistic inference is NP-complete
 - Sampling (approximate)
- Learning Bayes' Nets from Data