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Bayes’ Nets

Probability Recap

Conditional probability
Product rule

Chain rule P(X1, X2,... Xn)

X, Y independent if and only if:

P(aly) =

P(z,y)
P(y)

P(z,y) = P(z|y)P(y)

11 P(XilXq,...
i=1

,Xio1)

Va,y: P(z,y) = P(z)P(y)

X and Y are conditionally independent given Z if and only if:

Vz,y,z 1 P(z,y|z) = P(x]z)P(y|2)

Bayes’ Net Semantics

P(X1)P(X2|X1)P(X3]X1,X2) ...
n

X1Y|Z

= A Bayes’ netisan
efficient encoding
of a probabilistic
model of a domain

= Questions we can ask:

S

=

= |nference: given a fixed BN, what is P(X | e)?

= Representation: given a BN graph, what kinds of distributions can it encode?

= Modeling: what BN is most appropriate for a given domain?

Example: Alarm Network

= Adirected, acyclic graph, one node per random variable
= A conditional probability table (CPT) for each node

= A collection of distributions over X, one for each combination

of parents’ values

P(X|ay...

= Bayes’ nets implicitly encode joint distributions
= As a product of local conditional distributions
= To see what probability a BN gives to a full assignment,

multiply all the relevant conditionals together:

n
P(z1,22,...an) = | P(i|parents(X;))

=1

an)

Example: Alarm Network

B | P(B) E | P(E)
+b | 0.001 +e | 0.002
b | 0.999 -e | 0.998
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b | -e |+ | 0001
b |-e|-a 0.999

0.001 x 0.998 x 0.94 x 0.1 x 0.7

B | P(B) E | P(E)
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+b | -e | -a 0.06
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P(+b)P(—e)P(+al +b,—e)P(—j| + a)P(+m|+a) = | b |- |+ | o000
b|-e|-a 0.999




Size of a Bayes’ Net Bayes’ Nets

= How big is a joint distribution over N = Both give you the power to calculate JRepresentation
Boolean variables?
2N P(X1:X21~--Xn)
® BNs: Huge space savings! = Conditional Independences

= How big is an N-node net if nodes

have up to k parents? = Also easier to elicit local CPTs

. A
O(N * 2'“’1) = Also faster to answer queries (coming) Probabilistic Inference

AY
£a0mp/ 4@

R = Learning Bayes’ Nets from Data
N

°

=

Conditional Independence Bayes Nets: Assumptions
= X and Y are independent if = Assumptions we are required to make to define the
Bayes net when given the graph:
Vo,y P(z,y) = P(x)P(y) —--=> XY Pladzs - 511) = Plas|parents(X2)
= Xand Y are conditionally independent given Z = Beyond above “chain rule > Bayes net” conditional

independence assumptions

Va,y,z P(a,ylz) = P(al2)P(ylz) - === X LY|Z

= Often additional conditional independences

= (Conditional) independence is a property of a distribution - = They can be read off the graph

= |mportant for modeling: understand assumptions made
when choosing a Bayes net graph

= Example: Alarm L Fire|Smoke

Example Independence in a BN

= Important question about a BN:
—| —|
= Are two nodes independent given certain evidence?

= If yes, can prove using algebra (tedious in general)
= If no, can prove with a counter example

= Example:

= Question: are X and Z necessarily independent?
= Answer: no. Example: low pressure causes rain, which causes traffic.
= X caninfluence Z, Z can influence X (via Y)
= Addendum: they could be independent: how?

= Conditional independence assumptions directly from simplifications in chain rule:

= Additional implied conditional independence assumptions?



D-separation: Outline

D-separation: Outline

LB

Causal Chains

= Study independence properties for triples
= Analyze complex cases in terms of member triples

= D-separation: a condition / algorithm for answering such
queries

Causal Chains

= This configuration is a “causal chain”
[ L= " on )
L}_? i

TR R

X: Low pressure Y: Rain Z: Traffic

P(x,y,2) = P(z)P(ylz) P(z]y)

= Guaranteed X independent of Z? No!

One example set of CPTs for which X is not
independent of Z is sufficient to show this
independence is not guaranteed.

Example:

= Low pressure causes rain causes traffic,
high pressure causes no rain causes no
traffic

= In numbers:

P(+y [ +x)=1,P(y |-x)=1,
P(+z|+y)=1,P(-z|-y)=1

Common Cause

= This configuration is a “causal chain” = Guaranteed X independent of Z given Y?

R " atfie Y2y _ P(z,y,2)
L}_? 11 L..! Pley) = 5t
/4 ‘ P(x)P(ylz) P(z|y)
2 " _ P@)P@ylo)P(:ly)
X: Low pressure Y: Rain Z: Traffic = P(Zly)
Yes!

P(x,y,z) = P(x)P(y|lz) P(z|y) = Evidence along the chain “blocks” the

influence

Common Cause

= This configuration is a “common cause” = Guaranteed X independent of Z? No!

Y: Project “;‘:1';‘—}7?1\
ve!

due !

S O
& I
X: :Ems L% @ﬁl Z: Lab full

P(z,y,2) = P(y)P(z|y) P(z]y)

One example set of CPTs for which X is not
independent of Z is sufficient to show this
independence is not guaranteed.

Example:

= Project due causes both forums busy
and lab full

* In numbers:

P(+x|+y)=1,P(x|-y)=1,
P(+z|+y)=1,P(-z|-y)=1

= This configuration is a “common cause” = Guaranteed X and Z independent given Y?

Y: Project @‘1\ 2
due |2y P(lz,y) = 7};&(:5)
. _ P)P(zly) P(=ly)
Ny P(y)P(zly)

W@ @P = P(z|y)
x:zirst;ms JF;% @ﬁl Z: Lab full Yes!

P(z,y,2) = P(y)P(z|y) P(z]y)

= Observing the cause blocks influence
between effects.



Common Effect

The General Case

= Last configuration: two causes of one = Are X and Y independent?

effect (v-structures)

they are not correlated

X: Raining Y: Ballgame

= Yes: the ballgame and the rain cause traffic, but

‘“ﬁ ' 4 = Still need to prove they must be (try it!)
1 ﬁﬁ
@ @ = Are X and Y independent given Z?

= No: seeing traffic puts the rain and the ballgame in

competition as explanation.

= This is backwards from the other cases

JW% = Observing an effect activates influence between
Z: Traffic (
\._.!' possible causes.

The General Case

Reachability

= General question: in a given BN, are two variables independent

(given evidence)?

= Solution: analyze the graph

= Any complex example can be broken

into repetitions of the three canonical cases @

Active / Inactive Paths

= Recipe: shade evidence nodes, look
for paths in the resulting graph

= Attempt 1: if two nodes are connected
by an undirected path not blocked by
a shaded node, they are conditionally
independent

= Almost works, but not quite
= Where does it break?
= Answer: the v-structure at T doesn’t count
as a link in a path unless “active”

D-Separation

= Question: Are X and Y conditionally independent given
evidence variables {Z}?
® Yes,if Xand Y “d-separated” by Z
= Consider all (undirected) paths from X to Y
® No active paths = independence!

= A path is active if each triple is active:
= Causal chain A — B — C where B is unobserved (either direction)
= Common cause A «<— B — C where B is unobserved
= Common effect (aka v-structure)
A — B < C where B or one of its descendents is observed

= All it takes to block a path is a single inactive segment

Active Triples

~{q 28

Inactive Triples

0-0-0
oo
o ©

= Query: X J_I_Xj|{Xk17"'7an} ?

= Check all (undirected!) paths between X; and X;

= |f one or more active, then independence not guaranteed

X XX Xkys ooy Xy }

= Otherwise (i.e. if all paths are inactive),
then independence is guaranteed

X U XiH{ Xkysooes Xy




Example Example

RILB  Yes ® & LUAT|T Vs
OO

R B|T LI1B Yes
R B|T' (1) LLB|T
L1 B|T Q o
0 LUB|T,R Yes 0
Example Structure Implications
= Variables: = Given a Bayes net structure, can run d-

L. separation algorithm to build a complete list of
= R: Raining . ) )
0 conditional independences that are necessarily

= T: Traffic true of the form

= D: Roof drips

= S: I’'m sad o Q Xi —U—Xj|{Xk17"'ann}

= Questions: 9
= This list determines the set of probability
TLD distributions that can be represented
T D|R Yes
T D|R,S
Computing All Independences Topology Limits Distributions

. (XLY,XUZYLZ AL |17
Given some graph topology XU Z| VXY |ZY 12| X) { | Y}

G, only certain joint
distributions can be ®

encoded @ @

The graph structure
guarantees certain
(conditional) independences

oMPUTE ALL THE
C\’NDEPENDE NCES/!

(There might be more
independence)

Adding arcs increases the
set of distributions, but has
several costs

Full conditioning can encode
any distribution

P
Pap=
P PP

PP



Bayes Nets Representation Summary

Bayes’ Nets

Bayes nets compactly encode joint distributions

Guaranteed independencies of distributions can be
deduced from BN graph structure

D-separation gives precise conditional independence
guarantees from graph alone

A Bayes’ net’ s joint distribution may have further
(conditional) independence that is not detectable until
you inspect its specific distribution

JRepresentation
JConditionaI Independences

= Probabilistic Inference
= Enumeration (exact, exponential complexity)
= Variable elimination (exact, worst-case
exponential complexity, often better)
= Probabilistic inference is NP-complete
= Sampling (approximate)

= Learning Bayes’ Nets from Data



