Probability Recap

- Conditional probability: \(P(e|y) = \frac{P(x,y)}{P(y)} \)

- Product rule: \(P(x,y) = P(x|y)P(y) \)

- Chain rule: \(P(X_1, X_2, \ldots, X_n) = \prod_{i=1}^{n} P(X_i|X_1, \ldots, X_{i-1}) \)

- \(X, Y \) independent if and only if: \(\forall x, y : P(x,y) = P(x)P(y) \)

- \(X \) and \(Y \) are conditionally independent given \(Z \) if and only if:

\[
\forall x, y, z : P(x,y|z) = P(x|z)P(y|z) \quad X \perp Y | Z
\]

Bayes’ Nets

- A Bayes’ net is an efficient encoding of a probabilistic model of a domain

- Questions we can ask:
 - Inference: given a fixed BN, what is \(P(X|e) \)?
 - Representation: given a BN graph, what kinds of distributions can it encode?
 - Modeling: what BN is most appropriate for a given domain?

Bayes’ Net Semantics

- A directed, acyclic graph, one node per random variable

- A conditional probability table (CPT) for each node

- A collection of distributions over \(X \), one for each combination of parents’ values

- Bayes’ nets implicitly encode joint distributions

- As a product of local conditional distributions

To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

\[
P(x_1, x_2, \ldots, x_n) = \prod_{i=1}^{n} P(x_i|\text{parents}(X_i))
\]

Example: Alarm Network

\[
P(+b, -e, +a, -j, +m) = \]

\[
P(+b, -e, +a, -j, +m) = P(+b)P(-e|+a, -j)P(+a|+b)P(-j) + aP(+m|+a) =
\]

\[
0.001 \times 0.998 \times 0.94 \times 0.1 \times 0.7
\]
Size of a Bayes’ Net

- How big is a joint distribution over N Boolean variables?
 2^N
- How big is an N-node net if nodes have up to k parents?
 $O(N \cdot 2^{k+1})$
- Both give you the power to calculate $P(X_1, X_2, \ldots, X_n)$.
- BNs: Huge space savings!
- Also easier to elicit local CPTs
- Also faster to answer queries (coming)

Bayes’ Nets

- Representation
 - Conditional Independences
 - Probabilistic Inference
 - Learning Bayes’ Nets from Data

Conditional Independence

- X and Y are independent if
 $\forall x, y \ P(x, y) = P(x)P(y) \ -\ -\ -\ -\ -\ -\ \ X \perp Y$
- X and Y are conditionally independent given Z
 $\forall x, y, z \ P(x, y|z) = P(x|z)P(y|z) \ -\ -\ -\ -\ -\ -\ \ X \perp Y|Z$
- (Conditional) independence is a property of a distribution
- Example: Alarm \perp Fire|Smoke

Example

X ─ Y ─ Z ─ W

- Conditional independence assumptions directly from simplifications in chain rule:
- Additional implied conditional independence assumptions?

Independence in a BN

- Important question about a BN:
 - Are two nodes independent given certain evidence?
 - If yes, can prove using algebra [tedious in general]
 - If no, can prove with a counter example
 - Example:

Example:

X ─ Y ─ Z

- Question: are X and Z necessarily independent?
 - Answer: no. Example: low pressure causes rain, which causes traffic.
 - X can influence Z, Z can influence X (via Y)
 - Addendum: they could be independent: how?
D-separation: Outline

- Study independence properties for triples
- Analyze complex cases in terms of member triples
- D-separation: a condition / algorithm for answering such queries

Causal Chains

- This configuration is a "causal chain".
- Guaranteed X independent of Z? No!
 - One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.
 - Example:
 - Low pressure causes rain causes traffic.
 - High pressure causes no rain causes no traffic.
 - In numbers:
 \[P(y | x) = 1, P(y | \neg x) = 1, \]
 \[P(z | y) = 1, P(z | \neg y) = 1 \]

- Guaranteed X independent of Z given Y?
 - Yes!
 - Evidence along the chain "blocks" the influence

Common Cause

- This configuration is a "common cause".
- Guaranteed X independent of Z? No!
 - One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.
 - Example:
 - Project due causes both forums busy and lab full.
 - In numbers:
 \[P(x | y) = 1, P(x | \neg y) = 1, \]
 \[P(z | y) = 1, P(z | \neg y) = 1 \]

- Guaranteed X and Z independent given Y?
 - Yes!
 - Observing the cause blocks influence between effects.
Common Effect

- Last configuration: two causes of one effect (v-structures)
- Are X and Y independent?
 - Yes: the ballgame and the rain cause traffic, but they are not correlated
 - Still need to prove they must be (try it!)
- Are X and Y independent given Z?
 - No: seeing traffic puts the rain and the ballgame in competition as explanation.
- This is backwards from the other cases
 - Observing an effect activates influence between possible causes.

The General Case

- General question: in a given BN, are two variables independent (given evidence)?
- Solution: analyze the graph
- Any complex example can be broken into repetitions of the three canonical cases

The General Case

- General question: in a given BN, are two variables independent (given evidence)?
- Solution: analyze the graph
- Any complex example can be broken into repetitions of the three canonical cases

Reachability

- Recipe: shade evidence nodes, look for paths in the resulting graph
- Attempt 1: if two nodes are connected by an undirected path not blocked by a shaded node, they are conditionally independent
- Almost works, but not quite
 - Where does it break?
 - Answer: the v-structure at T doesn’t count as a link in a path unless “active”

Active / Inactive Paths

- Question: Are X and Y conditionally independent given evidence variables [Z]?
 - Yes, if X and Y are “d-separated” by Z
 - Consider all (undirected!) paths from X to Y
 - No active paths = independence!
- A path is active if each triple is active:
 - Causal chain A \rightarrow B \rightarrow C where B is unobserved (either direction)
 - Common cause A \leftarrow B \rightarrow C where B is unobserved
 - Common effect (aka v-structure) A \rightarrow B \leftarrow C where B or one of its descendents is observed
- All it takes to block a path is a single inactive segment

D-Separation

- Query: $X_i \perp X_j \mid \{X_{k_1}, \ldots, X_{k_n}\}$?
- Check all (undirected!) paths between X_i and X_j
 - If one or more active, then independence not guaranteed
 $$X_i \not\perp X_j \mid \{X_{k_1}, \ldots, X_{k_n}\}$$
 - Otherwise (i.e. if all paths are inactive), then independence is guaranteed
 $$X_i \perp X_j \mid \{X_{k_1}, \ldots, X_{k_n}\}$$
Variables:
- R: Raining
- T: Traffic
- D: Roof drips
- S: I'm sad

Questions:
- $T \perp D$
- $T \perp D|R$
- $T \perp D|R,S$

Structure Implications
- Given a Bayes net structure, can run d-separation algorithm to build a complete list of conditional independences that are necessarily true of the form

$$X_i \perp X_j \mid \{X_{k_1}, \ldots, X_{k_m}\}$$

- This list determines the set of probability distributions that can be represented

Computing All Independences
- Given some graph topology G, only certain joint distributions can be encoded
- The graph structure guarantees certain (conditional) independences
- (There might be more independence)
- Adding arcs increases the set of distributions, but has several costs
- Full conditioning can encode any distribution
Bayes Nets Representation Summary

- Bayes nets compactly encode joint distributions
- Guaranteed independencies of distributions can be deduced from BN graph structure
- D-separation gives precise conditional independence guarantees from graph alone
- A Bayes’ net's joint distribution may have further (conditional) independence that is not detectable until you inspect its specific distribution

Bayes’ Nets

- Representation
- Conditional Independences
 - Probabilistic Inference
 - Enumeration (exact, exponential complexity)
 - Variable elimination (exact, worst-case exponential complexity, often better)
 - Probabilistic inference is NP-complete
 - Sampling (approximate)
 - Learning Bayes’ Nets from Data