CS 188: Artificial Intelligence

Bayes’ Nets: Inference

Instructors: Dan Klein and Pieter Abbeel --- University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Bayes’ Net Representation

= Adirected, acyclic graph, one node per random variable
= A conditional probability table (CPT) for each node

= A coIIectiop of distributions over X, one for each combination
of parents’ values

P(X|(J,1 e a/n)
= Bayes’ nets implicitly encode joint distributions
= As a product of local conditional distributions
= To see what probability a BN gives to a full assignment,

multiply all the relevant conditionals together:

n
P(:Ijl, Dy ... J}n) = H P(wi|parents(X.l-))
=1




Example: Alarm Network

B Y —

B | P(B) E | P(E) wi =
]
+b | 0.001 @ +e | 0.002 el
b | 0.999 -e | 0.998 . 42% ?
B | E| A | PA|IBE)
+b | +e | +a 0.95
+b | +e | -a 0.05
+b | -e | +a 0.94
Al S| PUIA) Al M |PMIA) +b | e | -a 0.06
+a | 4 0.9 +a | +m 0.7 b | +e | +a 0.29
+a j 0.1 +a | -m 0.3 b | +e | -a 0.71
-;a | 4 0.05 -a | +m 0.01 b | -e | +a 0.001
-a j 0.95 -a | -m 0.99 b | -e| -a 0.999
[Demo: BN Applet]
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Example: Alarm Network
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P(+b,—e,+a,—j,+m) =

P(+b)P(—e)P(+a| + b, —e)P(—j| + a)P(+m| + a) =

0.001 x 0.998 x 0.94 x 0.1 x 0.7

Bayes’ Nets

B| E| A | PA|IBE)
+b | +e | +a 0.95
+b | +e | -a 0.05
+b | -e [ +a 0.94
+b | -e | -a 0.06
-b | +e | +a 0.29
b | +e | -a 0.71
b | -e | +a 0.001
b | -e| -a 0.999

& Representation

« Conditional Independences

= Probabilistic Inference

= Enumeration (exact, exponential

complexity)

= Variable elimination (exact, worst-case
exponential complexity, often better)

= |nference is NP-complete

= Sampling (approximate)

= Learning Bayes’ Nets from Data




Inference

= |nference: calculating some = Examples:
useful quantity from a joint

probability distribution " Posterior probability

P(QIE1=e1,... B, =¢)
= Most likely explanation:

argmaxy, P(Q =q|E1 =e1...)

N S N

Inference by Enumeration

* Works fine with

= General case: = We want: multiple query
- (Elviden*ce va)rislbleS: By BEp=ei-ex | X1 X5 ... Xn P variables, too
= uer variaple:
ueryvarl Q All variables (Q|61 s ek)
= Hidden variables: Hy...H,
= Step 1: Select the = Step 2: Sum out H to get joint = Step 3: Normalize
entries consistent of Query and evidence

with the evidence

=N | oo | ><
.2
oL

= 7

’-J Z=ZP(Q,61-~~ek)

P(Q,el...ek)=hzh P(Q,h1...hr,e1...er) 1
T P@Qler---er) = 2P(@ue1--ex)




Inference by Enumeration in Bayes’ Net

= Given unlimited time, inference in BNs is easy e e
= Reminder of inference by enumeration by example:

P(B|+j,+m) xpg P(B,+j,+m) °

= P(B)P(e)P(a|B,e)P(+j]a)P(+mla)

= ZP(B,@, a,+j,+m)

=P(B)P(+e€)P(+a|B,+e)P(+j| + a)P(+m| + a) + P(B)P(+¢)P(—a|B, +e)P(+j| — a)P(+m| — a)
P(B)P(—e)P(+a|B,—e)P(+j| + a)P(+m| + a) + P(B)P(—e)P(—a|B, —e) P(+j| — a) P(+m| — a)

Inference by Enumeration?




Inference by Enumeration vs. Variable Elimination

= Why is inference by enumeration so slow? = |dea: interleave joining and marginalizing!
= You join up the whole joint distribution before = (Called “Variable Elimination”

you sum out the hidden variables = Still NP-hard, but usually much faster than
inference by enumeration

= First we’ll need some new notation: factors

Factor Zoo




Factor Zoo |

P(T, W)
= Joint distribution: P(X,Y) T W | p
= Entries P(x,y) for all x, y hot sun | 0.4 {:-”Wﬂ
" Sumstol hot rain | 0.1 e > 0
cold sun 0.2 '
cold rain | 0.3
= Selected joint: P(x,Y)
= Aslice of the joint distribution P(cold, W)
= Entries P(x,y) for fixed x, all y T W P
= Sums to P(x) cold sun | 0.2
cold rain | 0.3 —
= Number of capitals = ]

dimensionality of the table

Factor Zoo |l

= Single conditional: P(Y | x)

P(Wcold)
= Entries P(y | x) for fixed x, all
T w P
= Sumstol
cold sun 0.4
cold rain 0.6
=S
P(W|T)
= Family of conditionals: T W P

hot sun 0.8
hot rain 0.2

P(Y | X)

= Multiple conditionals

} P(W |hot)

= Entries P(y | x) forall x, y

cold sun 0.4
cold rain 0.6 P(W|00ld)

= Sumsto |X|




Factor Zoo llI

= Specified family: P(y | X)
= Entries P(y | x) for fixed y,
but for all x
= Sums to ... who knows!

P(rain|T)

T w | P

hot rain | 0.2 P(rain|hot)
P(rain|cold)

cold rain 0.6

Factor Zoo Summary

* Ingeneral, when we write P(Y; ... Yy | X; ... Xy)
* |tisa “factor,” a multi-dimensional array

= |tsvalues are P(y; ... Yy | X; .. Xy)

= Any assigned (=lower-case) X or Y is a dimension missing (selected) from the array




Example: Traffic Domain

= Random Variables f(RO).l
= R: Raining @ -+ |09
= T: Traffic P(T|R)
= |: Late for class! @ :: +tt gszs
-r +t 0.1
P(L) — 7 e -r -t 0.9
=Y P(r,t,L) +tP (I:L||T)0.3
it + | -1 |07
=3 PPN PLIY [T
r,t

Inference by Enumeration: Procedural Outline

Track objects called factors
Initial factors are local CPTs (one per node)

P(R) P(T|R) P(L|T)
| +r | 0.1 | +r | +t [ 0.8 +t + [ 0.3
[+ [ o9 ] +r | t [02 + | -1 |07

-r + [ 0.1 -t + [ 0.1
-r -t [ 0.9 -t -l 0.9

Any known values are selected
* E.g.if we know J, = -}/, the initial factors are

P(R) P(T|R) P(+4|T)
[+ T o1] +r | +t [08 [+t ]+ Jo3]
[ r [ 09 ] +r | -t [0.2 [+ ]+ Joa]
-r + | 0.1
-r -t [ 0.9

Procedure: Join all factors, eliminate all hidden variables, normalize



Operation 1: Join Factors

= First basic operation: joining factors

=  Combining factors:
= Just like a database join % —
= Get all factors over the joining variable

= Build a new factor over the union of the variables
involved

= Example: Joinon R
e P(R) X P(T|R) =——=> P(R,T)
+r 0.1 +r | +t [0.8 +r | +t | 0.08
-r 0.9 +r | -t (0.2 +r | -t | 0.02
e -r |+t |01 -r | +t | 0.09
- | t]09 | -t]os1

= Computation for each entry: pointwise products V7, . P(r,t) = P(r) - P(tl?”)

Example: Multiple Joins




Example: Multiple Joins

(-
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P(T|R)

, P(R,T
loinR UK JoinT
+r | +t | 0.08
,—:> +r | -t | 0.02 :>

+r

+t |0.8

+r

-t |0.2

-r

+t |0.1

-r

-t |0.9

P(L|T)

+t

+ 0.3

+t

-1 0.7

-t

+l 0.1

-t

-1 ]0.9

-r | +t | 0.09
Txtos] CRTD P(R,T,L)

+r +t + | 0.024

e +r +t -l 0.056

+r -t +l | 0.002

P(L|T) +r -t -l | 0.018
+t | + (0.3 -r + | + | 0.027
+t | -l |0.7 -r +t -l | 0.063
-t | +1 0.1 -r -t +l | 0.081
-t | -l 0.9 -r -t -l | 0.729

Operation 2: Eliminate

= Second basic operation: marginalization

= Take a factor and sum out a variable

= Shrinks a factor to a smaller one

= A projection operation

= Example:

P(R,T)

+r

+t

0.08

+r

-t

0.02

-r

+t

0.09

-r

-t

0.81

sum R

P(T)




Multiple Elimination

> ®

+r |+t + | 0.024

P(R,T,L) T+« | 4 [00s6| Sum Sum
w | |« Jo002] outR FP@L)  outT P(L)
| -t - | 0.018 +t | + | 0.051 o1
-+ |+ | + |0.027 + ] -l]o. + .
T Tooes] T Cilarlesy] | i Losss
-r -t +l | 0.081 it | - |o0.747
-r -t -l | 0.729

{(

Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration)




Marginalizing Early (= Variable Elimination)

Traffic Domain

() P(L)="7

G = Inference by Enumeration = Variable Elimination

© =SS PP P = P(L[t) Y P(r)P(t|r)
t r \_“_I t r |_'_'
Joinonr Joinonr
[ J |_'_'
Join g)n t Eliminate r
EIimir'\ate r Join :m t

T
Eliminate t Eliminate t



Marginalizing Early! (aka VE)

JoinR P(R, T) Sum out R JoinT Sumout T
P(R ﬁ>
B = el = P(T) =>
+r | 0.1 +r | -t | 0.02
r 109 -r | +t | 0.09 +tt g';;
-r|-t|0.81 -
e P(T|R)
+r | +t |0.8 m @ @
+r| -t |0.2 ( )
|+t ]0.1 P(T,L
(D) F'iios ’ P(L)
r . +t | +l | 0.051
+t | -1 [0.119 + 10.134
o P(LIT) P(L|T) P(LIT) -t | +1 [ 0.083 -1 ]0.866
+t | 41 |0.3 +t | +l [0.3 -t | -l |0.747
+t| -l [0.7 :: :l 83 +t| -1 [0.7
-t | +]0.1 R 0'1 -t | +]0.1
-t |-1]0.9 P 0'9 -t |-1]0.9
Evidence

= |f evidence, start with factors that select that evidence
= No evidence uses these initial factors:

P(R) P(T|R) P(L|T)
[ +r T o1 ] +r | +t [ 08 +t [ + [o03
[ -+ T o9 ] +r | t [02 +t | - [07

-r | +t [ 0.1 -t + | 0.1
+ | -t o9 + | -1 o9

» Computing P(L| + r)the initial factors become:

P(+r) P(T|+r)  P(IT)

[+ [ o1 ] [+ [+ Jos] + | + |03
[+ [t ]o2] +t | - [07

-t + [ 01

-t -l 0.9

= We eliminate all vars other than query + evidence



Evidence Il

= Result will be a selected joint of query and evidence
= E.g.for P(L | +r), we would end up with:

P(+r, L)

+r

Normalize
+

+r | -l

0.026 :‘::
0.074

P(L|+7)

+l [ 0.26
-l | 0.74

= To get our answer, just normalize this!

That’s it!

General Variable Elimination

" Query: P(QIEy =eq,... By =ey)
Start with initial factors:

= Local CPTs (but instantiated by evidence)

While there are still hidden variables
(not Q or evidence):

= Pick a hidden variable H

/‘[—%//
= Join all factors mentioning H

= Eliminate (sum out) H

[y

Join all remaining factors and normalize

1
[~m- X

Z



Example

P(Bl|j,m) o< P(B,j,m) O. o ()
P(B) P(E) P(A|B, E) P(jlA)  P(m|A)
OO
Choose A
P(A|B, E)
P(j|A) X > P(,m,AlB,E) [¥ ) P(j,m|B,E)
P(m|A)
P(B) P(E) P(j,m|B, E)
Example
P(B) P(E) P(j,m|B, E) &) ()
Choose E °
P(E) ﬁ> P(j,m, E|B) ﬁ> P(j,m|B) O W
P(j,m|B, E)
P(B) P(j,m|B)
Finish with B

p(];,(ﬁfB) §> P(j,m, B) P(B|j,m)



Same Example in Equations

P(B|j,m) < P(B,j,m)

P(B) P(E) P(A|B, E) P(jlA)  P(m|A)

P(B|j,m) o P(B,j,m)
= > P(B,j,m,ea)

_ :Z’:;pw)p(e)mB,e>P<j|a>P<ma>
= iP(B)P(e)ZP(a|B,6)P(J'|a)P(m\a)
= Y PRI A(B e m)

= P(B)Y P (B.e.jom)

= P(B)a(B,j,m)

marginal obtained from joint by summing out
use Bayes’ net joint distribution expression
use x*(y+z) = xy + xz

joining on a, and then summing out gives f;
use x*(y+z) =xy +xz

joining on e, and then summing out gives f,

All we are doing is exploiting uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz = (u+v)(w+x)(y+z) to improve computational efficiency!

Another Variable Elimination Example

Query: P(X3|Y1 =y1,Y2 = y2,Y3 = y3)
Start by inserting evidence, which gives the following initial factors:
P(Z)p(X1|12)p(X2|12)p(X3|12)p(y2| X1 )p(y2] Xo)p(ys| Xs)

Eliminate X, this introduces the factor fi(Z,y1) = 3, p(z1|Z)p(y1|z1), and
we are left with:

P(Z) [1(Z, y1)p(X2| Z)p(X3] Z)p(y2| X2)p(ys| X3)

Eliminate X, this introduces the factor f2(Z,y2) = 3, p(w2|Z)p(y2l|z2), and
we are left with:

P(Z) f1(Z,y1) f2(Z, y2)p(X3| Z)p(ys| X5)

Computational complexity critically

Eliminate Z, this introduces the factor f3(y1,y2, X3) = ., p(2) f1(2, y1) f2(2, y2)p(X35]2), depends on the largest factor being

and we are left:
P(ys3|X3), f3(y1, y2, X3)
No hidden variables left. Join the remaining factors to get:

fa(y1: 2,93, X3) = P(y3| X3) f3(y1, y2, X3)-

Normalizing over X3 gives P(X3|y1,y2,y3)-

generated in this process. Size of factor
= number of entries in table. In
example above (assuming binary) all
factors generated are of size 2 --- as
they all only have one variable (Z, Z,
and X, respectively).



Variable Elimination Ordering

= For the query P(X,|yy,...,y,) work through the following two different orderings
as done in previous slide: Z, X, ..., X, ; and X,, ..., X,.;, Z. What is the size of the
maximum factor generated for each of the orderings?

= Answer: 2" versus 22 (assuming binary)

= |n general: the ordering can greatly affect efficiency.

VE: Computational and Space Complexity

= The computational and space complexity of variable elimination is
determined by the largest factor

= The elimination ordering can greatly affect the size of the largest factor.
= E.g., previous slide’s example 2" vs. 2

= Does there always exist an ordering that only results in small factors?
= No!



Worst Case Complexity?

= CSP:

(Ilvwg \/“Ig)/\("]?l \/CEgV_\CE4)/\(IQV_\.TQV$4)/\(_\I3V_‘I4VﬂI5)A(I2V$5\/JZ7)/\(314\/275\/16)/\(".275\/176Vﬂ17)/\(_|I5\/_|.276\/I7)

P(X;=0)=P(X;=1) = 0.5
Y] :X1 \/X2V_'X3

Ys = X5V X6 V X7
Yio=Y1AY,

Yris=Y7 A Yy

Y5678 =Ys56AYrs

Z=Y1234NY5678

= |f we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution.

= Hence inference in Bayes’ nets is NP-hard. No known efficient probabilistic inference in general.

Polytrees

= A polytree is a directed graph with no undirected cycles

= For poly-trees you can always find an ordering that is efficient
= Tryit!!

= Cut-set conditioning for Bayes’ net inference

= Choose set of variables such that if removed only a polytree remains
= Exercise: Think about how the specifics would work out!



Bayes’ Nets

& Representation
« Conditional Independences

= Probabilistic Inference

J Enumeration (exact, exponential
complexity)

J Variable elimination (exact, worst-case
exponential complexity, often better)

J Inference is NP-complete

= Sampling (approximate)

= Learning Bayes’ Nets from Data



