CS 188: Artificial Intelligence

Bayes' Nets: Inference

Instructors: Dan Klein and Pieter Abbeel --- University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Bayes' Net Representation

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1 \ldots a_n)$$

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Example: Alarm Network

Е	P(E)
+e	0.002
-е	0.998

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-е	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-е	+a	0.001
-b	ę	-a	0.999

[Demo: BN Applet]

Example: Alarm Network

P(E)

0.002

+m

P(M|A)

0.7

0.3

P(B)

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-е	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-е	+a	0.001
-b	-е	-a	0.999

Example: Alarm Network

Α	J	P(J A)
+a	+j	0.9
+a	-j	0.1
-a	+j	0.05
-a	-j	0.95

Е	P(E)
+e	0.002
φ	0.998

Α	M	P(M A)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99

$$P(+b, -e, +a, -j, +m) = P(+b)P(-e)P(+a|+b, -e)P(-j|+a)P(+m|+a) = 0.001 \times 0.998 \times 0.94 \times 0.1 \times 0.7$$

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-е	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-е	+a	0.001
-b	-e	-a	0.999

Bayes' Nets

- ✓ Representation
- ✓ Conditional Independences
- Probabilistic Inference
 - Enumeration (exact, exponential complexity)
 - Variable elimination (exact, worst-case exponential complexity, often better)
 - Inference is NP-complete
 - Sampling (approximate)
- Learning Bayes' Nets from Data

Inference

- Inference: calculating some useful quantity from a joint probability distribution
- Examples:
 - Posterior probability

$$P(Q|E_1 = e_1, \dots E_k = e_k)$$

Most likely explanation:

$$\operatorname{argmax}_q P(Q = q | E_1 = e_1 \ldots)$$

Inference by Enumeration

- General case:
 - Evidence variables:
 - Query* variable:
 - Hidden variables:
- $\left. \begin{array}{l} E_1 \dots E_k = e_1 \dots e_k \\ Q \\ H_1 \dots H_r \end{array} \right\} \begin{array}{l} X_1, X_2, \dots X_n \\ \text{All variables} \end{array}$
- We want:
- * Works fine with multiple query variables, too

$$P(Q|e_1 \dots e_k)$$

 Step 1: Select the entries consistent with the evidence

Step 2: Sum out H to get joint of Query and evidence

$$P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(\underbrace{Q, h_1 \dots h_r, e_1 \dots e_k})$$

$$X_1, X_2, \dots X_n$$

Step 3: Normalize

$$Z = \sum_{q} P(Q, e_1 \cdots e_k)$$
$$P(Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$$

Inference by Enumeration in Bayes' Net

В

- Given unlimited time, inference in BNs is easy
- Reminder of inference by enumeration by example:

$$P(B \mid +j,+m) \propto_B P(B,+j,+m)$$

$$= \sum_{e,a} P(B,e,a,+j,+m)$$

$$= \sum_{e,a} P(B)P(e)P(a|B,e)P(+j|a)P(+m|a)$$

$$=P(B)P(+e)P(+a|B,+e)P(+j|+a)P(+m|+a) + P(B)P(+e)P(-a|B,+e)P(+j|-a)P(+m|-a) \\ P(B)P(-e)P(+a|B,-e)P(+j|+a)P(+m|+a) + P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)$$

Inference by Enumeration?

Inference by Enumeration vs. Variable Elimination

- Why is inference by enumeration so slow?
 - You join up the whole joint distribution before you sum out the hidden variables

- Idea: interleave joining and marginalizing!
 - Called "Variable Elimination"
 - Still NP-hard, but usually much faster than inference by enumeration

• First we'll need some new notation: factors

Factor Zoo

Factor Zoo I

- Joint distribution: P(X,Y)
 - Entries P(x,y) for all x, y
 - Sums to 1
- Selected joint: P(x,Y)
 - A slice of the joint distribution
 - Entries P(x,y) for fixed x, all y
 - Sums to P(x)
- Number of capitals = dimensionality of the table

P(T, W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

P(cold, W)

Т	W	Р
cold	sun	0.2
cold	rain	0.3

Factor Zoo II

- Single conditional: P(Y | x)
 - Entries P(y | x) for fixed x, all
 - Sums to 1

P(W|cold)

Т	W	Р
cold	sun	0.4
cold	rain	0.6

- Family of conditionals: P(Y | X)
 - Multiple conditionals
 - Entries P(y | x) for all x, y
 - Sums to |X|

P(W|T)

Т	W	Р		
hot	sun	8.0	$\bigcap_{D(1)}$	
hot	rain	0.2	$\int P(t)$	
cold	sun	0.4	D()	
cold	rain	0.6	$\mid \mid P(\mid$	

P(W|hot)

P(W|cold)

Factor Zoo III

- Specified family: P(y | X)
 - Entries P(y | x) for fixed y, but for all x
 - Sums to ... who knows!

P(rain|T)

T	W	Р	
hot	rain	0.2	$ bracket{P(rain hot)}$
cold	rain	0.6	$\left[ight] P(rain cold)$

Factor Zoo Summary

- In general, when we write $P(Y_1 ... Y_N \mid X_1 ... X_M)$
 - It is a "factor," a multi-dimensional array
 - $\blacksquare \ \ \, \text{Its values are P}(\mathsf{y}_1 \ldots \mathsf{y}_\mathsf{N} \mid \mathsf{x}_1 \ldots \mathsf{x}_\mathsf{M}) \\$
 - Any assigned (=lower-case) X or Y is a dimension missing (selected) from the array

Example: Traffic Domain

Random Variables

R: Raining

■ T: Traffic

L: Late for class!

$$P(L) = ?$$

$$= \sum_{r,t} P(r,t,L)$$

$$= \sum_{r,t} P(r)P(t|r)P(L|t)$$

P(R)
+r	0.1
-r	0.9

P(T R)		
+r	+t	0.8
+r	-t	0.2
-r	+t	0.1
-r	-t	0.9

P(L T)		
+	0.3	
7	0.7	
+1	0.1	
7	0.9	
	+l -l	

Inference by Enumeration: Procedural Outline

- Track objects called factors
- Initial factors are local CPTs (one per node)

P(R)		
+r	0.1	
-r	0.9	

P(T R)		
+r	+t	0.8
+r	-t	0.2
-r	+t	0.1
-r	-t	0.9

P(L T)			
+t	+1	0.3	
+t	-	0.7	
-t	+1	0.1	
-t	-1	0.9	

- Any known values are selected
 - E.g. if we know $L=+\ell$ the initial factors are

	P(I	?)
Ī	+r	0.1
	-r	0.9

P(T R)			
+r	+t	0.8	
+r	-t	0.2	
-r	+t	0.1	
-r	-t	0.9	

$$P(+\ell|T)$$

$$\begin{array}{c|ccc} +t & +l & 0.3 \\ \hline -t & +l & 0.1 \end{array}$$

• Procedure: Join all factors, eliminate all hidden variables, normalize

Operation 1: Join Factors

- First basic operation: joining factors
- Combining factors:
 - Just like a database join
 - Get all factors over the joining variable
 - Build a new factor over the union of the variables involved

- Computation for each entry: pointwise products orall r, t : $P(r,t) = P(r) \cdot P(t|r)$

Example: Multiple Joins

Example: Multiple Joins

0.1 0.9 P(T|R)

P(R)

Join R

R, *T*

+r	+t	0.8
+r	-t	0.2
-r	+t	0.1
-r	-t	0.9
P((L I)	Γ)

<u> </u>	-	
L T)		

+t	7	0.3
+t	-1	0.7
-t	+	0.1
-t	-1	0.9

<i>P</i> (<i>D</i> 3	.)
+t	+	0.3

`		,
+t	7	0.3
+t	7	0.7
-t	+1	0.1
-t	-1	0.9

P(R,T,L)			
+r	+t	+1	0.024
+r	+t	-1	0.056
+r	-t	+1	0.002
+r	-t	-1	0.018
-r	+t	+1	0.027
-r	+t	-1	0.063
-r	-t	+1	0.081
-r	-t	-1	0.729

Operation 2: Eliminate

- Second basic operation: marginalization
- Take a factor and sum out a variable
 - Shrinks a factor to a smaller one
 - A projection operation

-t 0.81

Example:

Multiple Elimination

Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration)

Marginalizing Early (= Variable Elimination)

Traffic Domain

$$P(L) = ?$$

Inference by Enumeration

Variable Elimination

Marginalizing Early! (aka VE)

Evidence

- If evidence, start with factors that select that evidence
 - No evidence uses these initial factors:

P(R)	
+r	0.1
-r	0.9

P(T R)		
+r	+t	0.8
+r	-t	0.2
-r	+t	0.1
-r	-t	0.9

P(L T)		
+t	+l	0.3
+t	-	0.7
-t	+1	0.1
-t	-1	0.9

lacksquare Computing P(L|+r) the initial factors become:

$$P(+r)$$

$$P(T|+r)$$
+r +t 0.8
+r -t 0.2

$$\begin{array}{c|cccc} P(L|T) \\ \hline +t & +l & 0.3 \\ +t & -l & 0.7 \\ \hline -t & +l & 0.1 \\ \hline -t & -l & 0.9 \\ \end{array}$$

• We eliminate all vars other than query + evidence

Evidence II

- Result will be a selected joint of query and evidence
 - E.g. for P(L | +r), we would end up with:

P(+r,L)		
+r	+	0.026
+r	-1	0.074

- To get our answer, just normalize this!
- That's it!

- Query: $P(Q|E_1 = e_1, \dots E_k = e_k)$
- Start with initial factors:
 - Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
 - Pick a hidden variable H
 - Join all factors mentioning H
 - Eliminate (sum out) H
- Join all remaining factors and normalize

Example

 $P(B|j,m) \propto P(B,j,m)$

P(B)

P(E)

P(A|B,E)

P(j|A)

P(m|A)

Choose A

P(A|B,E)

P(j|A)

P(m|A)

P(j, m, A|B, E) \sum P(j, m|B, E)

P(B)

P(E)

P(j,m|B,E)

Example

P(B)

P(E)

P(j,m|B,E)

Choose E

P(E)

P(j,m|B,E)

P(j, m, E|B)

P(j, m|B)

P(B)

P(j, m|B)

Finish with B

P(B)P(j, m|B)

P(j, m, B)

Normalize

P(B|j,m)

Same Example in Equations

$$P(B|j,m) \propto P(B,j,m)$$

$$P(B)$$
 $P(E)$ $P(A|B,E)$ $P(j|A)$ $P(m|A)$
 $P(B|j,m) \propto P(B,j,m)$

$$P(B|j,m) \propto P(B,j,m)$$

$$= \sum_{e,a} P(B,j,m,e,a) \qquad \text{marginal obtained from joint by summing out}$$

$$= \sum_{e,a} P(B)P(e)P(a|B,e)P(j|a)P(m|a) \qquad \text{use Bayes' net joint distribution expression}$$

$$= \sum_{e} P(B)P(e)\sum_{a} P(a|B,e)P(j|a)P(m|a) \qquad \text{use x*(y+z) = xy + xz}$$

$$= \sum_{e} P(B)P(e)f_1(B,e,j,m) \qquad \text{joining on a, and then summing out gives f}_1$$

$$= P(B)\sum_{e} P(e)f_1(B,e,j,m) \qquad \text{use x*(y+z) = xy + xz}$$

$$= P(B)f_2(B,j,m) \qquad \text{joining on e, and then summing out gives f}_2$$

All we are doing is exploiting uwy + uwz + uxy + uxz + vwy + vwz = (u+v)(w+x)(y+z) to improve computational efficiency!

Another Variable Elimination Example

Query:
$$P(X_3|Y_1 = y_1, Y_2 = y_2, Y_3 = y_3)$$

Start by inserting evidence, which gives the following initial factors:

$$p(Z)p(X_1|Z)p(X_2|Z)p(X_3|Z)p(y_1|X_1)p(y_2|X_2)p(y_3|X_3)$$

Eliminate X_1 , this introduces the factor $f_1(Z,y_1) = \sum_{x_1} p(x_1|Z)p(y_1|x_1)$, and we are left with:

$$p(Z)f_1(Z,y_1)p(X_2|Z)p(X_3|Z)p(y_2|X_2)p(y_3|X_3)\\$$

Eliminate X_2 , this introduces the factor $f_2(Z, y_2) = \sum_{x_2} p(x_2|Z)p(y_2|x_2)$, and we are left with:

$$p(Z)f_1(Z, y_1)f_2(Z, y_2)p(X_3|Z)p(y_3|X_3)$$

Eliminate Z, this introduces the factor $f_3(y_1,y_2,X_3)=\sum_z p(z)f_1(z,y_1)f_2(z,y_2)p(X_3|z),$ and we are left:

$$p(y_3|X_3), f_3(y_1, y_2, X_3)$$

No hidden variables left. Join the remaining factors to get:

$$f_4(y_1, y_2, y_3, X_3) = P(y_3|X_3)f_3(y_1, y_2, X_3).$$

Normalizing over X_3 gives $P(X_3|y_1,y_2,y_3)$.

Computational complexity critically depends on the largest factor being generated in this process. Size of factor = number of entries in table. In example above (assuming binary) all factors generated are of size 2 --- as they all only have one variable (Z, Z, and X₃ respectively).

Variable Elimination Ordering

For the query $P(X_n | y_1,...,y_n)$ work through the following two different orderings as done in previous slide: $Z, X_1, ..., X_{n-1}$ and $X_1, ..., X_{n-1}$, Z. What is the size of the maximum factor generated for each of the orderings?

- Answer: 2ⁿ⁺¹ versus 2² (assuming binary)
- In general: the ordering can greatly affect efficiency.

VE: Computational and Space Complexity

- The computational and space complexity of variable elimination is determined by the largest factor
- The elimination ordering can greatly affect the size of the largest factor.
 - E.g., previous slide's example 2ⁿ vs. 2
- Does there always exist an ordering that only results in small factors?
 - No!

Worst Case Complexity?

CSP:

 $(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (x_2 \lor \neg x_2 \lor x_4) \land (\neg x_3 \lor \neg x_4 \lor \neg x_5) \land (x_2 \lor x_5 \lor x_7) \land (x_4 \lor x_5 \lor x_6) \land (\neg x_5 \lor x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor x_7)$

- If we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution.
- Hence inference in Bayes' nets is NP-hard. No known efficient probabilistic inference in general.

Polytrees

- A polytree is a directed graph with no undirected cycles
- For poly-trees you can always find an ordering that is efficient
 - Try it!!
- Cut-set conditioning for Bayes' net inference
 - Choose set of variables such that if removed only a polytree remains
 - Exercise: Think about how the specifics would work out!

Bayes' Nets

- **✓** Representation
- ✓ Conditional Independences
- Probabilistic Inference
 - Enumeration (exact, exponential complexity)
 - ✓ Variable elimination (exact, worst-case exponential complexity, often better)
 - ✓ Inference is NP-complete
 - Sampling (approximate)
- Learning Bayes' Nets from Data