CS 188: Artificial Intelligence

Bayes' Nets: Inference

Instructors: Dan Klein and Pieter Abbeel --- University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Bayes' Net Representation

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1\ldots a_n)$$

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Example: Alarm Network

0.95

+m

0.01

E P(E) +e 0.002			
	Е	P(E)	
-e 0.998	+e	0.002	
0.550	-е	0.998	

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-е	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-е	+a	0.001
-b	-e	-a	0.999

[Demo: BN Applet]

Example: Alarm Network

	В	Е	Α	P(A B,E)
	+b	+e	+a	0.95
	+b	+e	-a	0.05
	+b	-е	+a	0.94
l	+b	-е	-a	0.06
	-b	+e	+a	0.29
	-b	+e	-a	0.71
	-b	-е	+a	0.001
	-b	-e	-a	0.999

Example: Alarm Network

\	E	P(E)	l
)	+e	0.002	
	-е	0.998	

	Α	М	P(M A)
	+a	+m	0.7
	+a	-m	0.3
")	-a	+m	0.01
	-a	-m	0.99

$$P(+b, -e, +a, -j, +m) = P(+b)P(-e)P(+a|+b, -e)P(-j|+a)P(+m|+a) = 0.001 \times 0.998 \times 0.94 \times 0.1 \times 0.7$$

-3-

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-е	+a	0.94
+b	-e	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-е	+a	0.001
-b	-е	-a	0.999

Inference

- Inference: calculating some useful quantity from a joint probability distribution
- Examples:
 - Posterior probability
 - $P(Q|E_1 = e_1, \dots E_k = e_k)$
 - Most likely explanation: $\operatorname{argmax}_q P(Q = q | E_1 = e_1 \ldots)$

Bayes' Nets

- ✓ Representation
- Conditional Independences
- Probabilistic Inference
 - Enumeration (exact, exponential complexity)
 - Variable elimination (exact, worst-case exponential complexity, often better)
 - Inference is NP-complete
 - Sampling (approximate)
- Learning Bayes' Nets from Data

Inference by Enumeration

- General case:
- Query* variable:
- Hidden variables:

Step 1: Select the

entries consistent

with the evidence

$$Q$$
 H_1
 H_2

- Evidence variables: $E_1 \dots E_k = e_1 \dots e_k$ $X_1, X_2, \dots X_n$ All variables

 - Step 2: Sum out H to get joint of Query and evidence

$$P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(Q, h_1 \dots h_r, e_1 \dots e_k)$$

$$X_1, X_2, \dots X_n$$

$$Z = \sum_q P(Q, e_1 \dots e_k)$$

$$P(Q|e_1 \dots e_k) = \frac{1}{Z} P(Q, e_1 \dots e_k)$$

- We want:
- * Works fine with multiple query variables, too

$$P(Q|e_1 \dots e_k)$$

Step 3: Normalize

$$\times \frac{1}{Z}$$

$$Z = \sum_{q} P(Q, e_1 \cdots e_k)$$

$$P(Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$$

Inference by Enumeration in Bayes' Net

- Given unlimited time, inference in BNs is easy
- Reminder of inference by enumeration by example:

$$P(B \mid +j,+m) \propto_B P(B,+j,+m)$$

$$= \sum_{e,a} P(B,e,a,+j,+m)$$

$$= \sum_{e,a} P(B)P(e)P(a|B,e)P(+j|a)P(+m|a)$$

$$=P(B)P(+e)P(+a|B,+e)P(+j|+a)P(+m|+a) + P(B)P(+e)P(-a|B,+e)P(+j|-a)P(+m|-a) \\ P(B)P(-e)P(+a|B,-e)P(+j|+a)P(+m|+a) + P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)$$

Inference by Enumeration?

Inference by Enumeration vs. Variable Elimination

- Why is inference by enumeration so slow?
 - You join up the whole joint distribution before you sum out the hidden variables

- Idea: interleave joining and marginalizing!
- Called "Variable Elimination"
- Still NP-hard, but usually much faster than inference by enumeration

• First we'll need some new notation: factors

Factor Zoo

Factor Zoo I

Joint distribution: P(X,Y)

- Entries P(x,y) for all x, y
- Sums to 1

Selected joint: P(x,Y)

- A slice of the joint distribution
- Entries P(x,y) for fixed x, all y
- Sums to P(x)
- Number of capitals = dimensionality of the table

P(T, W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

P(cold, W)

Т	W	Р
cold	sun	0.2
cold	rain	0.3

Factor Zoo II

Single conditional: P(Y | x)

- Entries P(y | x) for fixed x, all
- Sums to 1

P(W|cold)

Т	W	Р
cold	sun	0.4
cold	rain	0.6

Family of conditionals: P(Y | X)

- Multiple conditionals
- Entries P(y | x) for all x, y
- Sums to |X|

P(W|T)

Т	W	Р	
hot	sun	0.8	D(W/h at)
hot	rain	0.2	P(W hot)
cold	sun	0.4	
cold	rain	0.6	P(W cold)

Factor Zoo III

Specified family: P(y | X)

- Entries P(y | x) for fixed y, but for all x
- Sums to ... who knows!

P(rain|T)

Т	W	Р	
hot	rain	0.2	$\bigcap P(rain hot)$
cold	rain	0.6	P(rain colo

Factor Zoo Summary

- In general, when we write P(Y₁ ... Y_N | X₁ ... X_M)
 - It is a "factor," a multi-dimensional array
 - Its values are P(y₁ ... y_N | x₁ ... x_M)
 - Any assigned (=lower-case) X or Y is a dimension missing (selected) from the array

Example: Traffic Domain

Random Variables

- R: Raining
- T: Traffic
- L: Late for class!

$$P(L) = ?$$

$$= \sum_{r,t} P(r,t,L)$$

$$= \sum_{r,t} P(r)P(t|r)P(L|t)$$

\widehat{R}	
1	

	P(P(R)		
	+r	0.1		
)	-r	0.9		
,				
	P(T R)			

1 (1 11)					
+r	+t	0.8			
+r	-t	0.2			
-r	+t	0.1			
-r	-t	0.9			

$$\begin{array}{c|cccc} P(L|T) \\ \hline +t & +l & 0.3 \\ +t & -l & 0.7 \\ \hline -t & +l & 0.1 \\ \hline -t & -l & 0.9 \\ \hline \end{array}$$

Inference by Enumeration: Procedural Outline

- Track objects called factors
- Initial factors are local CPTs (one per node)

P(R)			P(T R)			
+r	0.1		+r	+t	0.8	
-r	0.9		+r	-t	0.2	
			-r	+t	0.1	
			-r	-t	0.9	

- Any known values are selected
 - E.g. if we know $L=+\ell$, the initial factors are

P(I	₹)	i
+r	0.1	
-r	0.9	
		F

-r +t 0.1

 $P(+\ell|T)$

Procedure: Join all factors, eliminate all hidden variables, normalize

Operation 1: Join Factors

- First basic operation: joining factors
- Combining factors:
 - Just like a database join
 - Get all factors over the joining variable
 - Build a new factor over the union of the variables involved
- Example: Join on R

• Computation for each entry: pointwise products $\forall r,t$: $P(r,t) = P(r) \cdot P(t|r)$

Example: Multiple Joins

Operation 2: Eliminate

Multiple Elimination

Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration)

Marginalizing Early (= Variable Elimination)

Traffic Domain

Marginalizing Early! (aka VE)

-t -l 0.9

-t -l 0.9

-t -l 0.9

Evidence

- If evidence, start with factors that select that evidence
 - No evidence uses these initial factors:

P(R)	P(T R)				P(L T)			
+r 0.1	+r	+t	0.8		+t	+1	0.3	
-r 0.9	+r	-t	0.2		+t	7	0.7	
	-r	+t	0.1		-t	+1	0.1	
	-r	-t	0.9		-t	7	0.9	
Computing $P(L +r)$ the initial factors become:								
P(+r) $P(T +r)$ $P(L T)$								
+r 0.1	+r	+t	0.8		+t	+	0.3	
	+r	-t	0.2		+t	-1	0.7	
					-t	+1	0.1	

• We eliminate all vars other than guery + evidence

Evidence II

Result will be a selected joint of query and evidence

■ E.g. for P(L | +r), we would end up with:

- To get our answer, just normalize this!
- That's it!

General Variable Elimination

- Query: $P(Q|E_1 = e_1, \dots E_k = e_k)$
- Start with initial factors:
 - Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
 - Pick a hidden variable H
 - Join all factors mentioning H
 - Eliminate (sum out) H
- Join all remaining factors and normalize

Example

$P(B|j,m) \propto P(B,j,m)$

P(B)

P(E)

P(A|B,E)

P(j|A)

P(m|A)

Choose A

P(A|B,E)P(j|A)P(m|A)

P(j,m,A|B,E) P(j,m|B,E)

P(B)

P(E)

P(j,m|B,E)

Example

P(B)

P(E)

P(j,m|B,E)

Choose E

P(E)

P(j, m|B, E)

P(B)

P(j,m|B)

Finish with B

P(B)P(j,m|B)

Same Example in Equations

$P(B|j,m) \propto P(B,j,m)$

 $=\sum P(B)P(e)f_1(B,e,j,m)$ $= P(B) \sum_{e} P(e) f_1(B, e, j, m)$

use $x^*(y+z) = xy + xz$ joining on e, and then summing out gives f₂

All we are doing is exploiting uwy + uwz + uxy + uxz + vwy + vwz = (u+v)(w+x)(y+z) to improve computational efficiency!

Another Variable Elimination Example

Query:
$$P(X_3|Y_1 = y_1, Y_2 = y_2, Y_3 = y_3)$$

Start by inserting evidence, which gives the following initial factors:

 $p(Z)p(X_1|Z)p(X_2|Z)p(X_3|Z)p(y_1|X_1)p(y_2|X_2)p(y_3|X_3)\\$

Eliminate X_1 , this introduces the factor $f_1(Z, y_1) = \sum_{x_1} p(x_1|Z)p(y_1|x_1)$, and

$$p(Z)f_1(Z, y_1)p(X_2|Z)p(X_3|Z)p(y_2|X_2)p(y_3|X_3)$$

Eliminate X_2 , this introduces the factor $f_2(Z, y_2) = \sum_{x_2} p(x_2|Z)p(y_2|x_2)$, and

$$p(Z)f_1(Z, y_1)f_2(Z, y_2)p(X_3|Z)p(y_3|X_3)$$

Eliminate Z, this introduces the factor $f_3(y_1, y_2, X_3) = \sum_z p(z) f_1(z, y_1) f_2(z, y_2) p(X_3|z)$, and we are left:

$$p(y_3|X_3), f_3(y_1, y_2, X_3)$$

No hidden variables left. Join the remaining factors to get:

$$f_4(y_1, y_2, y_3, X_3) = P(y_3|X_3)f_3(y_1, y_2, X_3).$$

Normalizing over X_3 gives $P(X_3|y_1, y_2, y_3)$.

Computational complexity critically depends on the largest factor being generated in this process. Size of factor = number of entries in table. In example above (assuming binary) all factors generated are of size 2 --- as they all only have one variable (Z, Z, and X₂ respectively).

Variable Elimination Ordering

• For the query $P(X_n | y_1,...,y_n)$ work through the following two different orderings as done in previous slide: $Z, X_1, ..., X_{n-1}$ and $X_1, ..., X_{n-1}, Z$. What is the size of the maximum factor generated for each of the orderings?

- Answer: 2ⁿ⁺¹ versus 2² (assuming binary)
- In general: the ordering can greatly affect efficiency.

VE: Computational and Space Complexity

- The computational and space complexity of variable elimination is determined by the largest factor
- The elimination ordering can greatly affect the size of the largest factor.
 - E.g., previous slide's example 2ⁿ vs. 2
- Does there always exist an ordering that only results in small factors?

Worst Case Complexity?

CSP:

- If we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution.
- Hence inference in Bayes' nets is NP-hard. No known efficient probabilistic inference in general.

Bayes' Nets

- **✓** Representation
- ✓ Conditional Independences
- Probabilistic Inference
 - Enumeration (exact, exponential complexity)
 - ✓ Variable elimination (exact, worst-case exponential complexity, often better)
 - ✓ Inference is NP-complete
 - Sampling (approximate)
- Learning Bayes' Nets from Data

Polytrees

- A polytree is a directed graph with no undirected cycles
- For poly-trees you can always find an ordering that is efficient
 - Trv it!
- Cut-set conditioning for Bayes' net inference
 - Choose set of variables such that if removed only a polytree remains
 - Exercise: Think about how the specifics would work out!