CS 188: Artificial Intelligence Bayes’ Net Representation

’ .
BayeS N etS . Infe rence = Adirected, acyclic graph, one node per random variable
= A conditional probability table (CPT) for each node

= A coIIectiop of distributions over X, one for each combination
of parents’ values

P(Xlay...an)
= Bayes nets implicitly encode joint distributions
= As a product of local conditional distributions

= To see what probability a BN gives to a full assighment,
multiply all the relevant conditionals together:

n
P(z1,x0,...2n) = P(z;|parents(X;))
Instructors: Dan Klein and Pieter Abbeel --- University of California, Berkeley " il;Il ‘ ‘

[These slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Example: Alarm Network Example: Alarm Network
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[Demo: BN Applet]



Example: Alarm Network

Bayes’ Nets
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0.001 x 0.998 x 0.94 x 0.1 x 0.7

Inference

& Representation
« Conditional Independences

= Probabilistic Inference

= Enumeration (exact, exponential
complexity)

= Variable elimination (exact, worst-case
exponential complexity, often better)

= Inference is NP-complete

= Sampling (approximate)

= Learning Bayes’ Nets from Data

Inference by Enumeration

= |nference: calculating some = Examples:

useful quantity from a joint

probability distribution * Posterior probability

P(QIEL =ey1,... By =¢)
= Most likely explanation:

argmax, P(Q =q|E; =e1...)

NN & N

* Works fine with

General case: = We want: multiple query
g\,iden*ce VE'lriba|bI-eS: Ey...Ep=e1...€ X1, Xo,...Xn variables, too
uery” varlapie: Q All variables P(Q|61 s ek)
Hidden variables: Hy...Hy
Step 1: Select the = Step 2: Sum out H to get joint = Step 3: Normalize

entries consistent of Query and evidence

with the evidence

1
><_
A

ZZZP(Q’CI“‘GA:)
q

P(Q,el...ek)=,2} P(Q,h1...hrie1...ep) L
et X1, Xp.... Xn PQler---ex) = ZP(Qe1---ex)



Inference by Enumeration in Bayes’ Net Inference by Enumeration?

= Given unlimited time, inference in BNs is easy G e
= Reminder of inference by enumeration by example:

P(B |+ j,+m) ocp P(B,+j,+m) 0

=" P(B)P(e)P(a|B, ) P(+j|a) P(+m]a)

= Z P(B7 e’ a7 +j7 +m)

=P(B)P(+e)P(+a|B,+e)P(+j| + a)P(+m| + a) + P(B)P(+e)P(—a|B, +e)P(+j| — a)P(+m| — a)
P(B)P(—e)P(+a|B,—e)P(+j| + a)P(+m| + a) + P(B)P(—e)P(—a|B, —e)P(+j| — a)P(+m| — a)

Inference by Enumeration vs. Variable Elimination Factor Zoo
= Why is inference by enumeration so slow? = Idea: interleave joining and marginalizing!
= You join up the whole joint distribution before = Called “Variable Elimination”
you sum out the hidden variables = Still NP-hard, but usually much faster than

inference by enumeration

= First we’ll need some new notation: factors




Factor Zoo | Factor Zoo Il

P(T, W)
= Joint distribution: P(X,Y) T w T ® Single conditional: P(Y | x) P (W |cold)
= Entries P(x,y) for all x, y hot sun |04 = Entries P(y | x) for fixed x, all T W 5
=S tol i = Sumstol
ums to hot rain_[ 01 cold | sun |04
cold sun_| 0.2 cold rain | 0.6
cold rain | 0.3
= Selected joint: P(x,Y)
= Aslice of the joint distribution P(cold, W) P(W|T)
: Entries P(x,y) for fixed x, all y T W P = Family of conditionals: T W P
Sums to P(x) cold sun | 0.2 P(Y | X) hot sun | 0.8
cold | rain |03 . Mt ditional ot | ran 102 P(W|hot)
= Number of capitals = ultiple conditionals
p cold sun 0.4

= Entries P(y | x) forall x,y
= Sums to |X]|

dimensionality of the table cold | rain | 0.6

—} P(W|cold)

Factor Zoo Il Factor Zoo Summary

= Specified family: P(y | X) = In general, when we write P(Y, ... Yy | X; ... X,)
= Entries P(y | x) for fixed y,

= |tisa “factor,” a multi-dimensional array
but for all x

* Sums to ... who knows! = lts values are P(y; ... yy | X; ... Xy)

= Any assigned (=lower-case) X or Y is a dimension missing (selected) from the array

P(rain|T)

T w | P

hot rain | 0.2 |} P(rain|hot)
}: P(rain|cold)

cold rain | 0.6




Example: Traffic Domain

Inference by Enumeration: Procedural Outline

= Random Variables
= R: Raining
= T: Traffic
= L: Late for class!

P(R)

[ [os]

P(T|R)

+r +t

0.8

+r -t

0.2

-r +t

0.1

-r -t

0.9

P(L|T)

+t +

0.3

+t -l

0.7

-t +

0.1

-t -l

0.9

Operation 1: Join Factors

= Track objects called factors
= |nitial factors are local CPTs (one per node)

P(R) P(TIR)  P(L|T)
[ +r [ 0.1 ] +r | +t [ 0.8 + | + [ 03
[ ] o9 ] +r |t |02 +t | - |07

o |+t |01 [+ |01
-r | -t {09 -t -l |09

= Any known values are selected
= E.g.if we know [, = -/, the initial factors are

P(R) PR PHUT)
[ +r [ 0.1 ] +r | +t [ 0.8 [ +t [ + ]0.3]
[« T o9 ] +r |t |02 [t ]+ Joa]
-r |+t (01
-r -t |09

= Procedure: Join all factors, eliminate all hidden variables, normalize

Example: Multiple Joins

= First basic operation: joining factors
= Combining factors:
= Just like a database join
= Get all factors over the joining variable

= Build a new factor over the union of the variables

involved

= Example:JoinonR

S B |

() P(R) x P(T|R) =——> P(R,T)

[ +r [ 0.1 ] +r |+t 0.8
[ -r [o9] +r| -t |02
0 r|+t]0.1
-r| -t [0.9
= Computation for each entry: pointwise products Vr, t:

+r

+t

0.08

+r

-t

0.02

-r

+t

0.09

-r

-t

0.81

P(r,t) = P(r) - P(t|r)



Example: Multiple Joins f‘.». Operation 2: Eliminate

P(R) . . »' = Second basic operation: marginalization

+r | 0.1 P(R.T) = Take a factor and sum out a variable .

. : N . 1
e r 109 Join R TrToos JoinT = Shrinks a factor to a smaller one

P(T‘R) ,—> +r | -t 0:02 |:> = A projection operation
0 +r |+t 0.8 r | +t]0.09

+rlt]o2 r|-t]0.81 m P(R,T,L) = Example: éﬂ

-r|+t]0.1 +r | +t | 4+ |0.024
0 -r|-t]og 0 o | +t | 1 |0.056 P(R,T) (T

P(L|T) P(L|T) o [« 4 Joooe wTafoss] Sum R P

+t[+]0.3 +t[+]03 o |+t | 4 [0027 ot g'g; > +tt g'g

+t] 107 w107 T [+t | 4 |0.063 Rl A :

2t |+ |01 2t |+ |01 T | x| + | 0081 rlt]0.

|09 t]-]09 T | x| 1 [0729

Multiple Elimination Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration)

+r | +t | + | 0.024 [
P(R7 T, L) +r | +t | - |0.056 Sum Sum . .

+r | -t | 4+ |0.002 out R P(T, L) outT P(L)
ro| -t -1 |0.018 +t | 4+l | 0.051

| #0027 | = [st[ ol [oa19] o> | M 10134
+ | - |0.063 R -l 10.886
t | +1 | 0.083 =>
- + | 0.081 -t |-l ]o0747
t | 1 |0.729

S |s|s s
N




Marginalizing Early (= Variable Elimination) Traffic Domain

(®) P(L) =7

e = |nference by Enumeration = Variable Elimination

© — SN PP P =>_P(L|t) ) P(r)P(t|r)
t T ‘_‘f_ ) t T _'_l
Joinonr Joinonr
. Joinont Eliminate r
I D EE—— L J
Eliminate r Join z')n t
T ! ! T !
Eliminate t Eliminate t

Marginalizing Early! (aka VE) Evidence

JEDOM PR T) S”:>m°”tR J:Dcm Sum:>°u” If evid tart with factors that select that evid
P(R " evidence, start wi actors that selec at evidence
(L +r|+t]0.08 P(T) = No evidence uses these initial factors:
+r | 0.1 +r | -t | 0.02 ’
T 09 T [+t [0.09 f: gg P(R) P(T|R) P(L|T)
-r|-t]0.81 - [+ [ o1 ] +r [ +t |08 +t | + [03
e P(T|R) @ [ [ oo | wr | t [02 +t | 4 o7
-r |+t [ 01 -t + 01
+r |+t 0.8 @ @ |t o9 | 4 09
+r| -t |0.2
-r | +t]0.1 P(T,L) = Computing P(L| + 7)the initial factors become:
0 -r | -t |0.9 0 +t | +l | 0.051 P(L)
P(LIT) P(LIT) 1 To11s + [0.134 P(+r) PT|+r) P(L|T)
| P(L|T) | |+ | 0.083 -1 |0.866 [+ T o1 ] { +r % +t %0.8% + [ + [03
+r | -t |02 + - |07
e +t |+ |0.3 4103 +t |+ |0.3 -t | -l ]0.747 - tt + |01
+t| -1 [0.7 i 0'7 +t| -1 0.7 | 1|09 =
t]+l0.1 -t |+ (0.1 4101 = We eliminate all vars other than query + evidence =
-] -]o9 ~ T 000 -t -]o9




Evidence Il

General Variable Elimination

= Result will be a selected joint of query and evidence
= E.g.for P(L | +r), we would end up with:

P(—+—T7 L) Normalize P(Ll + 7')

+r | +1 | 0.026 :; +l | 0.26
+r| -1 | 0.074 -l |0.74

= To get our answer, just normalize this!

= That's it!

Example

Query: P(Q|Ey = ey, .- By = ¢p)

Start with initial factors:
= Local CPTs (but instantiated by evidence)

While there are still hidden variables
(not Q or evidence):

= Pick a hidden variable H

= Join all factors mentioning H

= Eliminate (sum out) H

Join all remaining factors and normalize

P(B|j,m) o P(B, j,m)

P(B)  P(E)  P(AIB.E)  P(jl4)  P(ml4)

| TR
Choose A

P(A|B, E)

PGIA)  [X) PGmAB.E) [£) PG.mIB,E)

P(m|A)

P(B) P(E) P(j,m|B, E)

Example
P PE)  PGmIBE) | OO
Choose E o
P(E) =) PGm.EIB) pGmp) O @
P(j,m|B,E) lz:>
P(B) P(j,m|B)
Finish with B

P(I;,(fziB) @ P(j,m, B) P(B|j,m)



Same Example in Equations

P(B|j,m) o< P(B,j,m)

‘ P(B)

P(E) P(A|B, E) P(jlA)

P(m|A) ‘

P(B|j,m)

P(B,j,m)
Y. P(B.j.m,e,a)
ea

3 PO P PGl B, ) PGl PGl

3" P(B)P() Y. P(alB, )P (la) P(m|a)
S P(B)P()fo(B e, m)

P(B)S" P()F1(B e, ,m)

P(B) fo(B,,m)

use Bayes’ net joint distribution expression
use x*(y+z) = xy + xz
joining on a, and then summing out gives f;
use x*(y+z) =xy +xz

joining on e, and then summing out gives f,

All we are doing is exploiting uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz = (u+v)(w+x)(y+z) to improve computational efficiency!

Variable Elimination Ordering

Another Variable Elimination Example

marginal obtained from joint by summing out

For the query P(X,|yy,...,¥,) work through the following two different orderings

as done in previous slide: Z, X, ..., X, ; and X, ...

, X1 Z. What is the size of the

maximum factor generated for each of the orderings?

Answer: 21 versus 22 (assuming binary)

In general: the ordering can greatly affect efficiency.

Query: P(X3|Y1 =y1,Y2 =2, Y3 = y3)
Start by inserting evidence, which gives the following initial factors:
P(2)p(X1| 2)p(Xa| 2)p(X5] 2)p(y1| X1)p(y2| X2)p(ys| X5)

Eliminate X, this introduces the factor f1(Z,y1) = 3, p(x1|2)p(y1]21), and
we are left with:

P(Z)1(Z, y1)p(X2| Z2)p(X5| Z)p(y2] X2)p(ys| X5)

Eliminate X5, this introduces the factor f2(Z,y2) = 35, p(22|Z)p(y2|22), and
we are left with:

P(2)f1(Z, 1) f2(Z, y2)p(Xs] Z)p(ys| Xs)

Eliminate Z, this introduces the factor fs(y1,v2, Xs) = >_, p(2) fi (2, 41) f2(2, y2)p(X3|2),

and we are left:
p(y3|X3), f3(y1, 92, X3)
No hidden variables left. Join the remaining factors to get:

Fay1,y2,y3, X3) = Plys| Xs) f(y1, y2, Xs)-

Normalizing over X3 gives P(X3|y1,y2,y3)-

Computational complexity critically
depends on the largest factor being
generated in this process. Size of factor
= number of entries in table. In
example above (assuming binary) all
factors generated are of size 2 --- as
they all only have one variable (Z, Z,
and X, respectively).

VE: Computational and Space Complexity

= The computational and space complexity of variable elimination is

determined by the largest factor

= The elimination ordering can greatly affect the size of the largest factor.

= E.g., previous slide’s example 2" vs. 2

= Does there always exist an ordering that only results in small factors?

= No!



Worst Case Complexity?

= CSP:

(z1VaoVozg)A(—x1 VasVazg AV oz Ve A(—azVzgVozs ) A(zeVasVar ) A(@aVesVae ) AN (s VaeV-ar ) A (a5 V-zeVar)

P(X;=0)=P(X;=1)=05
Yi=X1VXyV-X3

Y = X5V X V X7
Yia=Y1AY,

Yos=Y7AYs
Yipsa=Y12AY34
Y5678 = Y56\ Y78

Z=Y1234NY5678

— —

™l
< ——

Hence inference in Bayes’ nets is NP-hard. No known efficient probabilistic inference in general.

Bayes’ Nets

Polytrees

e v
0 e‘e QD W
@‘@ ®
®
0

If we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution.

& Representation
« Conditional Independences

= Probabilistic Inference

V Enumeration (exact, exponential
complexity)

lVariabIe elimination (exact, worst-case
exponential complexity, often better)

J Inference is NP-complete

= Sampling (approximate)

= Learning Bayes’ Nets from Data

= A polytree is a directed graph with no undirected cycles

= For poly-trees you can always find an ordering that is efficient
= Tryit!!

= Cut-set conditioning for Bayes’ net inference

= Choose set of variables such that if removed only a polytree remains
= Exercise: Think about how the specifics would work out!



