CS 188: Artificial Intelligence

Bayes’ Nets: Inference

Instructors: Dan Klein and Pieter Abbeel --- University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All C5188 materials are available at http://ai.berkeley.edu.]

Example: Alarm Network

Bayes’ Net Representation

= Adirected, acyclic graph, one node per random variable
= A conditional probability table (CPT) for each node

= A collectiop of distributions over X, one for each combination
of parents’ values

P(X|ay...an)
= Bayes’ nets implicitly encode joint distributions
= As a product of local conditional distributions
= To see what probability a BN gives to a full assignment,

multiply all the relevant conditionals together:

n
P(z1,22,...2n) = [[ P(x;|parents(X;))
i=1

Example: Alarm Network

B P(B) E P(E)
5 | 0001 e | 0.002 =
-b | 0.999 -e | 0.998 s %— -#
B E A P(A|B,E)
+b | +e | +a 0.95
+b | +e | a 0.05
+b | -e | +a 0.94
A 1| PUlA) A | M [PM]A) +b | e | -a 0.06
+a | 4 0.9 +a | +m 0.7 b | +e | +a 0.29
+a | o 0.1 +a | -m 0.3 b | +e | a 0.71
-a | 4 0.05 -;a | +m 0.01 b | -e | +a 0.001
-a -j 0.95 -a | -m 0.99 b|-e|-a 0.999

[Demo: BN Applet]

Example: Alarm Network

B P(B) E P(E)

+b | 0.001 +e | 0.002

-b | 0.999 -e | 0.998
A 1| PUIA) o A | M [PM|A)
+a | 4 0.9 +a | +m 0.7
+a -j 0.1 +a | -m 0.3
-;a | 4 0.05 -;a | +m 0.01
-a -j 0.95 -a -m 0.99

P(+b7 —-e€, +aa _j7 +m) =
P(+b)P(—e)P(+a| + b, —e)P(—j| + a)P(+m| + a) =

Bayes’ Nets

B | E | A | PAIBE)
+b | +e | +a 0.95
+b | +e | -a 0.05
+b | -e | +a 0.94
+b | -e | -a 0.06
-b | +e | +a 0.29
b | +e | -a 0.71
b | -e | +a 0.001
b | -e|-a 0.999

B | P(B) E | P(E)
+b | 0.001 +e | 0.002 g“

b | 0.999 e [0.998 3 %#
A | )| PUIA) o A | M [PM]A)

+a | 4 0.9 +a|+m | 07 B E|A|PAIBE
+a | - 0.1 va | -m 03 +b | +e | +a 0.95

ca | 4 0.05 0 @ a | +m 0.01 +b | +e | a 0.05

a | 0.95 = | m 0.99 +b | e | +a 0.94
+h|e|-a 0.06

. b | +e | +a 0.29

P(+b, —e, +a,—j,+m) = b |+e|a| o071
P(+b)P(—e)P(+al +b,—€e)P(—j| + a)P(+m|+a) = | b | e |+ | 000
b | -e|-a 0.999

0.001 x 0.998 x 0.94 x 0.1 x 0.7

& Representation
« Conditional Independences

= Probabilistic Inference

= Enumeration (exact, exponential
complexity)

Variable elimination (exact, worst-case
exponential complexity, often better)

Inference is NP-complete

Sampling (approximate)

= Learning Bayes’ Nets from Data



Inference Inference by Enumeration

* Works fine with
. = General case: = We want: multiple query
= Inference: calculating some = Examples: = Evidencevariables:  E1.--Ep=e1..¢k | x| X, X, variables, too
useful quantity from a joint ® Query* variable: Q Allvariabl P(Qley...e)
hn P = Posterior probabilit = Hidden variables: variables
probability distribution p Y Hy...Hr

P(QIE1 =e1,... By = ¢;)
= Step 1:Select the
= Most likely explanation:

argmax, P(Q=gq|Ey =e;1...)

= - : d@ >< =
g or 1 “
Z=3 P(Qe1ex)
@ P(Q,e1...ep) =h2h P(Q,hy.. . hroe1...ep) a

1
X1, Xo, ... Xn P(Qler---er) = ZP(Qrer--ex)

= Step 2: Sum out H to get joint = Step 3: Normalize

entries consistent of Query and evidence
with the evidence

Inference by Enumeration in Bayes’ Net Inference by Enumeration?

= Given unlimited time, inference in BNs is easy ° e
= Reminder of inference by enumeration by example:
=Y P(B.e.a,+j,+m)

=Y _P(B)P(¢)P(a|B,e)P(+jla)P(+m]a)

P(B)P(+e)P(+a|B, +e)P(+j| + a)P(+m| + a) + P(B)P(+e)P(~al B, +¢) P(+j| — a) P(+m| — a)
P(B)P(—e)P(+a|B, —e)P(+j| + a)P(+m| + a) + P(B)P(—e)P(—a|B, —e)P(+j| — a)P(+m| — a)

Inference by Enumeration vs. Variable Elimination Factor Zoo

= Why is inference by enumeration so slow?

® You join up the whole joint distribution before
you sum out the hidden variables

= |dea: interleave joining and marginalizing!
= Called “Variable Elimination”

= Still NP-hard, but usually much faster than
inference by enumeration

= First we’ll need some new notation: factors



Factor Zoo | Factor Zoo Il

P(T,W)
= Joint distribution: P(X,Y) T w ® Single conditional: P(Y | x) P(W/|cold)
= Entries P(x,y) for all x, y hot sun | 0.4 = Entries P(y | x) for fixed x, all = - -
= Sumstol hot | rain |01 " sumstol cold | sun |04
cold sun | 0.2 cold rain | 0.6

= Selected joint: P(x,Y)

= Aslice of the joint distribution P(cold, W) P(WI|T)
= Entries P(x,y) for fixed x, all y T w P = Family of conditionals: T W P
= Sums to P(x) cold sun | 0.2 hot sun | 0.8
cold | rain |03 PY | X). " hot an 102 } P(W|hot)
. _ = Multiple conditionals
= Number of capitals = Entries Ply | x) for al cold | sun |04
. . . ®= Entries X) for all x,
dimensionality of the table et I‘;I ¥ i oo Toe } P(W|cold)
Factor Zoo lll Factor Zoo Summary

= Specified family: P(y | X) = In general, when we write P(Y, ... Yy | X; ... Xy,
* Entries Ply | x)for fixed y, = Itisa “factor,” a multi-dimensional array
but for all x

= Sums to ... who knows! = ltsvalues are P(y; ... yy | X; ... Xy)

= Any assigned (=lower-case) X or Y is a dimension missing (selected) from the array

P(rain|T)
T w [P
hot | rain |02 |} P(rain|hot)
cold rain | 0.6 }:P(Tain\cold)

Example: Traffic Domain Inference by Enumeration: Procedural Outline

P(R) = Track objects called factors

® Random Variables = |nitial factors are local CPTs (one per node)

= R: Raining o P(R) P(T|R) P(L|T)
* T: Traffic P(T|R) B B B
= L: Late for class! 0 ot os i Tos s
4ro| . - 2
o |+t [ 01 = Any known values are selected
P(L) =7 o w1t 109 = E.g.if we know [, = -4, the initial factors are
P(LIT) P(R) P(T|R) P(+4T)
:ZP(T7t7L) w3 To3 [ [o1] wr [+t 08 [+t [ [o3]
rt | 1 |07 L Los] T Lol ol
=3 PPt P(LI) T Tos o

rt = Procedure: Join all factors, eliminate all hidden variables, normalize



Operation 1: Join Factors Example: Multiple Joins

= First basic operation: joining factors

= Combining factors:
= Just like a database join % EI
Get all factors over the joining variable »
Build a new factor over the union of the variables
involved

= Example: Joinon R

@ PR x PTIR) == P(RT)
[+r Jo1] +r [+t [038 +r | +t ] 0.08

[ [o9] +r | -t [02 +r | -t | 0.02 =>
-r [+t (0.1 -r | +t | 0.09
0 -r|-t|09 -r|-t|081

= Computation for each entry: pointwise products V7, t :  P(r,t) = P(r) - P(t|r)

Example: Multiple Joins f.”- Operation 2: Eliminate

P(R) . - »' = Second basic operation: marginalization

P(R.T) = Take a factor and sum out a variable .
_ ’
0 m JoinR T+t 008 JoinT = Shrinks a factor to a smaller one
T .
P(T|R) |t 002 — = A projection operation
0 +r]+t]0.8 or |+t 10.09
+r| t]02 r]-t]081 @ P(R,T,L) * Example: éﬂ
-r |+t (0.1 +r | +t | + |0.024
o o[t ]o.9 e v | +t | 1 | 0056 P(R,T) P(T
P(LIT) P(L|T) e R ITE wtfoos] SUM R )
wt[+1]03 +t[+1]03 o |+t |+ 0027 Ul :t 8'8; =
w07 wt]]07 o |+t | 4 0063 Tos
|+ 0.0 ]+ ]0.1 |+ |+ |o081 ] t]0.
<[]0 <t [-1]09 * | | 4 0729
Multiple Elimination Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration)
D) <G
+ +t + | 0.024 =
P(R,T,L) [y w1 looss] Sum Sum .
w |+ [ s [o002] outR F(ID) outT P(L)
+r -t -l ] 0.018 +t | +l [ 0.051
-r +t + | 0.027 |:‘> +t| -l |0.119
o« | +t | 4 |0063 -t [+ 0.083 EN =>
| t |+ 0081 -t -1 o747
T | 4| 4 o729




Marginalizing Early (= Variable Elimination) Traffic Domain

(®) P(L)="7?

G = |Inference by Enumeration = Variable Elimination

— 33 PLIHP()Pr) =Y P(LIt) Y P(r)P(tlr)
" t T \_‘r_’ t T

Joinonr Joinon ¢
. Joinont Eliminate r
)

Eliminate r Joinont
-_— . T !
Eliminate t Eliminate t

Marginalizing Early! (aka VE) Evidence

JoinR P(R,T) Sum out R JoinT Sumout T  ovid ith h | h d
P(R) = ot s = PT) => => If evidence, start with factors that select that evidence
r - = No evidence uses these initial factors:
[o4] +r| -t [0.02
[os ] |+t ] 0.09 P(R) P(T|R) P(L|T)
| t]o81 w o W W+ [0
o P(T‘R) @ } -r } g; } +r tt g.i +: \I g.i
r + [ 0.1 t + |01
+r |+t |0.8 @ @ [t o9 | - Jo9
+r |-t 0.2 ( )
T+t o1 P(T,L = Computing P(L 7 )the initial factors become:
0 : Tt 0.9 o +t |+ [ 0051 P e
P(LIT) P(LIT) +t] - |0119 P(+r)  P(T|+r) P(LIT)
P(L‘T) + | 0.083 [+ To1] [er [+t Jo8] 4t | + |03
o w403 T3 ]+ 03 t| 4 o747 b foz] o
+t] -1 0.7 PP 0'7 +t| -1 0.7 t | 4 o9
t]+]0.1 -t |+ ]0.1 t]+]01 = We eliminate all vars other than query + evidence
t]-1]o9 T 009 t]-1]09
Evidence Il General Variable Elimination

= Result will be a selected joint of query and evidence
= E.g.for P(L | +r), we would end up with:

" Query: P(Q|E1 =e1,... Ek: = ek)

P(+r,L) Normalize P(L|+ ) = Start with initial factors:

= Local CPTs (but instantiated by evidence)

= While there are still hidden variables
(not Q or evidence):
= Pick a hidden variable H
= Join all factors mentioning H
= Eliminate (sum out) H

= To get our answer, just normalize this!

= That'sit!

—_— = Join all remaining factors and normalize



Example

Example

P(B|j,m) < P(B,j,m)

‘P(B) P(E)  P(AIB,E)  P(j|A) P(m|A)‘

Choose A
P(A|B,E)
P(jlA) X > P(j,m,A|B,E) [ > P(j,m|B,E)
P(m|A)
‘ P(B) P(E) P(j,m|B,E)‘

Same Example in Equations

[ r») P PGmIBE) | OWpe

Choose E

P(E) X » P@GmEB) [ ) P@,mB) o Q
P(j,m|B, E) ! ’

) P(j,m|B)

Finish with B

oty X PG ) D> P(Blj,m)

Another Variable Elimination Example

P(B|j,m) < P(B,j,m)

‘P(B) P(E)  P(AIB,E)  P(jlA) P(m\A)‘

P(Blj,m) o« P(B,j,m)

= Y P(B.j,m,e,a) marginal obtained from joint by summing out
a

= Y P(B)P(e)P(a|B,e) P(jla) P(m|a) use Bayes’ net joint distribution expression
a

= Y P(B)P(e) Y P(al B, ) P(jla) P(mla) use x*(y+2z) = xy + xz
< a

= Y P(B)P(e)f1(B,e,j,m) joining on a, and then summing out gives f;
=

= P(B)Y_ P(e)f1(B,e,j,m) use x*(y+z) =xy +xz

G
= P(B)f2(B,j,m) joining on e, and then summing out gives f,

All we are doing is exploiting Uwy + UWZ + UXy + UXZ + VWy + YWz + VXy +vxz = (u+v)(w+x)(y+2) to improve computational efficiency!

Variable Elimination Ordering

Query: P(X3|Y1 =y1,Y2 =2, Y3 = y3)

Start by inserting evidence, which gives the following initial factors:
P(Z)p(X1|2)p(X2|Z)p(X5] Z2)p(y1| X1)p(y2| X2)p(ys | Xs)

Eliminate X), this introduces the factor f1(Z,y1) = ¥, p(1/Z)p(y1]21), and
we are left with:

2(2) [1(Z,y0)p(Xa| 2)p(X3] Z)p(y2| Xa)p(ys| X5)

2, P2| Z)p(yelz), and

Eliminate X5, this introduces the factor f(Z,1
we are left with:

P(Z)F(Z, 1) f2 2, y2)p(Xs| Z)p(s] Xs)

Eliminate Z, this introduces the factor fa(y1, y2, X) = 3 p() f1 (2 1) fo(z 12 p(Xs)2),
and we are left:

Pys| Xa), fay1, 2 Xa)
No hidden variables left. Join the remaining factors to get:
Falyr,v2, 55, Xs) = Plys| Xs) f(n, v, Xs).

Normalizing over X gives P(Xalyr, vz, ya)

Computational complexity critically
depends on the largest factor being
generated in this process. Size of factor
= number of entries in table. In
example above (assuming binary) all
factors generated are of size 2 --- as.
they all only have one variable (z, Z,
and X respectively).

VE: Computational and Space Complexity

= Forthe query P(X, |yy,...,y,) work through the following two different orderings
as done in previous slide: Z, X,, ..., X,; and Xy, ..., X, Z. What is the size of the
maximum factor generated for each of the orderings?

= Answer: 2™ versus 22 (assuming binary)

= In general: the ordering can greatly affect efficiency.

= The computational and space complexity of variable elimination is

determined by the largest factor

= The elimination ordering can greatly affect the size of the largest factor.

= E.g., previous slide’s example 2" vs. 2

= Does there always exist an ordering that only results in small factors?

= No!



Worst Case Complexity?

Polytrees
= CSP:

(w1 VaraV-as) A~y VasV g AaeV - Vag A —asV-agVoas )N (@2 VasVar ) A(zgVas Vae ) A(~as VaeV a7 ) AN ~asV-agVar)

= Apolytree is a directed graph with no undirected cycles
P(X;=0)=P(X;=1)=05 o @ o 0 @ Q e
Yi=X1VXoV-X; - .

e O WP QW
Yia=Y1AY,
Yog =Yr A Yy Q 0 0
Yin34 = Y12 AYs,
Yenan =Yoo A Yo &,

O,

= For poly-trees you can always find an ordering that is efficient
. Tryitll

= Cut-set conditioning for Bayes’ net inference

= Choose set of variables such that if removed only a polytree remains

= Exercise: Think about how the specifics would work out!
Z=Y1234 Y5678

= |If we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution.
= Hence inference in Bayes’ nets is NP-hard. No known efficient probabilistic inference in general.

Bayes’ Nets

& Representation
« Conditional Independences

= Probabilistic Inference

J Enumeration (exact, exponential
complexity)

J Variable elimination (exact, worst-case
exponential complexity, often better)

& Inference is NP-complete

= Sampling (approximate)

Learning Bayes’ Nets from Data



