CS 188: Artificial Intelligence
Bayes' Nets: Inference

Instructors: Dan Klein and Pieter Abbeel --- University of California, Berkeley
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Example: Alarm Network

Bayes' Net Representation

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
- A collection of distributions over X, one for each combination of parents' values

$$
P\left(X \mid a_{1} \ldots a_{n}\right)
$$

- Bayes' nets implicitly encode joint distributions

- As a product of local conditional distributions
- To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \text { parents }\left(X_{i}\right)\right)
$$

Example: Alarm Network

Example: Alarm Network

Bayes' Nets

Representation

- Conditional Independences
- Probabilistic Inference
- Enumeration (exact, exponential complexity)
- Variable elimination (exact, worst-case exponential complexity, often better)
- Inference is NP-complete
- Sampling (approximate)
- Learning Bayes' Nets from Data

Inference

- Inference: calculating some useful quantity from a joint probability distribution

- Examples:

- Posterior probability $P\left(Q \mid E_{1}=e_{1}, \ldots E_{k}=e_{k}\right)$
- Most likely explanation: $\operatorname{argmax}_{q} P\left(Q=q \mid E_{1}=e_{1} \ldots\right)$

Inference by Enumeration in Bayes' Net

- Given unlimited time, inference in BNs is easy
- Reminder of inference by enumeration by example:
$P(B \mid+j,+m) \propto_{B} P(B,+j,+m)$

$$
\begin{aligned}
& =\sum_{e, a} P(B, e, a,+j,+m) \\
& =\sum_{e, a} P(B) P(e) P(a \mid B, e) P(+j \mid a) P(+m \mid a)
\end{aligned}
$$

$=P(B) P(+e) P(+a \mid B,+e) P(+j \mid+a) P(+m \mid+a)+P(B) P(+e) P(-a \mid B,+e) P(+j \mid-a) P(+m \mid-a)$ $P(B) P(-e) P(+a \mid B,-e) P(+j \mid+a) P(+m \mid+a)+P(B) P(-e) P(-a \mid B,-e) P(+j \mid-a) P(+m \mid-a)$

Inference by Enumeration

Inference by Enumeration?

Inference by Enumeration vs. Variable Elimination

- Why is inference by enumeration so slow?
- You join up the whole joint distribution before you sum out the hidden variables

- Idea: interleave joining and marginalizing!
- Called "Variable Elimination"
- Still NP-hard, but usually much faster than inference by enumeration

- First we'll need some new notation: factors

Factor Zoo

Factor Zoo I

Factor Zoo III

- Specified family: $P(y \mid X)$
$P(\operatorname{rain} \mid T)$

T	W	P
hot	rain	0.2
cold	rain	0.6

- Entries $P(y \mid x)$ for fixed y,
but for all x
- Sums to ... who knows!
$P($ rain $\mid h o t)$
$P($ rain \mid cold $)$

Example: Traffic Domain

- Random Variables
- R: Raining
- T: Traffic
- L: Late for class!

$$
P(L)=?
$$

$$
\begin{aligned}
& =\sum_{r, t} P(r, t, L) \\
& =\sum_{r, t} P(r) P(t \mid r) P(L \mid t)
\end{aligned}
$$

Factor Zoo II

$P(W \mid$ cold $)$

T	W	P
cold	sun	0.4
cold	rain	0.6

- Family of conditionals: $P(Y \mid X)$
- Multiple conditionals
- Entries $\mathrm{P}(\mathrm{y} \mid \mathrm{x})$ for all x, y
- Sums to $|X|$

- In general, when we write $P\left(Y_{1} \ldots Y_{N} \mid X_{1} \ldots X_{M}\right)$
- It is a "factor," a multi-dimensional array
- Its values are $P\left(y_{1} \ldots y_{N} \mid x_{1} \ldots x_{M}\right)$
- Any assigned (=lower-case) X or Y is a dimension missing (selected) from the array

Inference by Enumeration: Procedural Outline

- Track objects called factors
- Initial factors are local CPTs (one per node)

- Any known values are selected
- E.g. if we know $L=+\ell$, the initial factors are

- Procedure: Join all factors, eliminate all hidden variables, normalize

Operation 1: Join Factors

- First basic operation: joining factors

- Combining factors:
- Just like a database join
- Get all factors over the joining variable
- Build a new factor over the union of the variables involved

- Example: Join on R

- Computation for each entry: pointwise products $\quad \forall r, t: \quad P(r, t)=P(r) \cdot P(t \mid r)$

Example: Multiple Joins

Operation 2: Eliminate

- Second basic operation: marginalization
- Take a factor and sum out a variable
- Shrinks a factor to a smaller one
- A projection operation
- Example:

Multiple Elimination

Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration)

Evidence

- If evidence, start with factors that select that evidence

Evidence II

- Result will be a selected joint of query and evidence
- E.g. for P(L) +r), we would end up with:

- To get our answer, just normalize this!
- That's it

- Query: $P\left(Q \mid E_{1}=e_{1}, \ldots E_{k}=e_{k}\right)$
- Start with initial factors:
- Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
- Pick a hidden variable H
- Join all factors mentioning H
- Eliminate (sum out) H
- Join all remaining factors and normalize

$\hat{p} \times=\frac{1}{Z}$

Same Example in Equations

$P(B \mid j, m) \propto P(B, j, m)$			
$P(B)$	$P(E)$	$P(A \mid B, E)$	$P(j \mid A)$
$P(B \mid j, m)$	$\propto P(m \mid A)$		
	$=\sum_{e, a} P(B, j, j, m, e, a)$		marginal obtained from joint by summing out
	$=\sum_{e, a} P(B) P(e) P(a \mid B, e) P(j \mid a) P(m \mid a)$		use Bayes' net joint distribution expression
	$=\sum_{e} P(B) P(e) \sum_{a} P(a \mid B, e) P(j \mid a) P(m \mid a)$		use $\mathrm{x}^{*}(\mathrm{y}+\mathrm{z})=\mathrm{xy}+\mathrm{xz}$
	$=\sum_{e}^{e} P(B) P(e) f_{1}(B, e, j, m)$		joining on a, and then summing out gives f_{1}
	$=P(B) \sum_{e}^{e} P(e) f_{1}(B, e, j, m)$		use $\mathrm{x}^{*}(\mathrm{y}+\mathrm{z})=\mathrm{xy}+\mathrm{xz}$
	$=P(B) f_{2}(B, j, m)$		joining on e, and then summing out gives f_{2}

All we are doing is exploiting $u w y+u w z+u x y+u x z+v w y+v w z+v x y+v x z=(u+v)(w+x)(y+z)$ to improve computational efficiency!

Variable Elimination Ordering

- For the query $\mathrm{P}\left(\mathrm{X}_{\mathrm{n}} \mid \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}\right)$ work through the following two different orderings as done in previous slide: $\mathrm{Z}, \mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}-1}$ and $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}-1}, \mathrm{Z}$. What is the size of the maximum factor generated for each of the orderings?

- Answer: 2^{n+1} versus 2^{2} (assuming binary)
- In general: the ordering can greatly affect efficiency.

Another Variable Elimination Example

Query: $P\left(X_{3} \mid Y_{1}=y_{1}, Y_{2}=y_{2}, Y_{3}=y_{3}\right)$ Start by inserting evidence, which gives the following initial factors: $p(Z) p\left(X_{1} \mid Z\right) p\left(X_{2} \mid Z\right) p\left(X_{3} \mid Z\right) p\left(y_{1} \mid X_{1}\right) p\left(y_{2} \mid X_{2}\right) p\left(y_{3} \mid X_{3}\right)$	Computational complexity critically depends on the largest factor being generated in this process. Size of factor = number of entries in table. In example above (assuming binary) all factors generated are of size 2 --- as they all only have one variable (Z, Z, and X_{3} respectively).
Eliminate X_{1}, this introduces the factor $f_{1}\left(Z, y_{1}\right)=\sum_{x_{1}} p\left(x_{1} \mid Z\right) p\left(y_{1} \mid x_{1}\right)$, and we are left with:	
$p(Z) f_{1}\left(Z, y_{1}\right) p\left(X_{2} \mid Z\right) p\left(X_{3} \mid Z\right) p\left(y_{2} \mid X_{2}\right) p\left(y_{3} \mid X_{3}\right)$	
Eliminate X_{2}, this introduces the factor $f_{2}\left(Z, y_{2}\right)=\sum_{x_{2}} p\left(x_{2} \mid Z\right) p\left(y_{2} \mid x_{2}\right)$, and we are left with:	
$p(Z) f_{1}\left(Z, y_{1}\right) f_{2}\left(Z, y_{2}\right) p\left(X_{3} \mid Z\right) p\left(y_{3} \mid X_{3}\right)$	
Eliminate Z, this introduces the factor $f_{3}\left(y_{1}, y_{2}, X_{3}\right)=\sum_{z} p(z) f_{1}\left(z, y_{1}\right) f_{2}\left(z, y_{2}\right) p\left(X_{3} \mid z\right)$, and we are left:	
$p\left(y_{3} \mid X_{3}\right), f_{3}\left(y_{1}, y_{2}, X_{3}\right)$	
No hidden variables left. Join the remaining factors to ge	
$f_{4}\left(y_{1}, y_{2}, y_{3}, X_{3}\right)=P\left(y_{3} \mid X_{3}\right) f_{3}\left(y_{1}, y_{2}, X_{3}\right)$.	
malizing	

Computational complexity critically depends on the largest factor being number of entries in table. In example above (assuming binary) al factors generated are of size $2 \ldots$ as and X_{3} respectively).

VE: Computational and Space Complexity

- The computational and space complexity of variable elimination is determined by the largest factor
- The elimination ordering can greatly affect the size of the largest factor
- E.g., previous slide's example $2^{2 n}$ vs. 2
- Does there always exist an ordering that only results in small factors? - No!

Polytrees

- If we can answer $\mathrm{P}(\mathrm{z})$ equal to zero or not, we answered whether the 3-SAT problem has a solution.
- Hence inference in Bayes' nets is NP-hard. No known efficient probabilistic inference in general.
- A polytree is a directed graph with no undirected cycles
- For poly-trees you can always find an ordering that is efficient - Try it!!
- Cut-set conditioning for Bayes' net inference
- Choose set of variables such that if removed only a polytree remains
- Exercise: Think about how the specifics would work out!

Bayes' Nets

- Representation

- Conditional Independences
- Probabilistic Inference
- Enumeration (exact, exponential complexity)
- Variable elimination (exact, worst-case exponential complexity, often better)
- Inference is NP-complete
- Sampling (approximate)
- Learning Bayes' Nets from Data

