CS 188: Artificial Intelligence Bayes’ Net Representation

) . .
Bayes Nets: Sam pl Ing = Adirected, acyclic graph, one node per random variable
= A conditional probability table (CPT) for each node

= A collectiop of distributions over X, one for each combination
of parents’ values

P(X|ay...an)
= Bayes’ nets implicitly encode joint distributions
= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment,
multiply all the relevant conditionals together:

n
P(xy,20,...2n) = P(z;|parents(X;))
Instructors: Dan Klein and Pieter Abbeel --- University of California, Berkeley 8 il;ll ! ‘
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All C5188 materials are available at http://ai.berkeley.edu.]
Variable Elimination Approximate Inference: Sampling

Interleave joining and marginalizing

d* entries computed for a factor over k
variables with domain sizes d

Ordering of elimination of hidden variables
can affect size of factors generated

= Worst case: running time exponential in the °> ,0‘/,9 e
size of the Bayes’ net 0‘6'/ 6"0 =5
@ © ©

Sampling Sampling

= Sampling is a lot like repeated simulation = Why sample? = Sampling from given distribution = Example
= Predicting the weather, basketball games, ... . I\;iirgrﬁﬁtﬁmples from a distribution + Step 1: Get sample u from uniform
= Basicidea = Inference: getting a sample is faster than di.strEibutiodn ovgr o1 c PO)
computing the right answer (e.g. with +&-random{) in python red 0.6 0<u<06,—C=red

= Draw N samples from a sampling distribution S

variable elimination) Step 2: Cofnve;t th?s sar;\.ple‘; in.to al:l green 0.1 0.6 <u<0.7,— C = green
= Compute an approximate posterior probability outcome for the given distribution by _

having each target outcome blue 0.3 0.7<u<1,—C=blue
associated with a sub-interval of [0,1)
with sub-interval size equal to
probability of the outcome

= Show this converges to the true probability P

= If random() returns u = 0.83,
then our sample is C = blue
= E.g, after sampling 8 times:

B o




Sampling in Bayes’ Nets

Prior Sampling

= Prior Sampling
= Rejection Sampling
= Likelihood Weighting
= Gibbs Sampling
Prior Sampling Prior Sampling
P(C)
= Fori=1,2,..,n
P(S|C) P(R|C) = Sample x; from P(X; | Parents(X;))
Blieaics il e = Return (Xy, Xy, «., X;)
-c | +s | 0.5 -c | +r |02
-s [0.5 -r 108
P(W‘S’ R) Samples:
v | +r | +w ] 099 .
W 0.01 +C, -5, +1, W
o | _+w [0.90 ¢, 45, 1, +W
-w 0.10
= +r | +w | 0.90
-w 0.10
-r +w | 0.01
-w 0.99

Prior Sampling

Example

This process generates samples with probability:

n
Sps(zy...zn) = H P(xz;|Pa

i=1

...i.e. the BN’s joint probability

rents(X;)) = P(x1...xn)

Let the number of samples of an eventbe Npg(z1...zn)

Then lim P(zy,...,an) =
N—oo

lim Npg(zy,...,zn)/N
N—oo
Sps(x1,...,xn)
P(zy...xpn)

l.e., the sampling procedure is consistent

= We'll get a bunch of samples from the BN:

+C, -5, +I, +W o
4,45, 41, 4w e.@
-C, +5, +r, -W
+C, -5, +r, W 0
-C, =S, I, tW

= |f we want to know P(W)

We have counts <+w:4, -w:1>
Normalize to get P(W) = <+w:0.8, -w:0.2>

This will get closer to the true distribution with more samples

Can estimate anything else, too
What about P(C | +w)? P(C | +r, +w)? P(C | -r, -w)?
Fast: can use fewer samples if less time (what’s the drawback?)



Rejection Sampling Rejection Sampling

= Let’s say we want P(C)
= No point keeping all samples around

()
= Just tally counts of C as we go e.o
@)

= Let’s say we want P(C | +s)

= Same thing: tally C outcomes, but

ignore (reject) samples which don’ t oS W

+C, +S, H, HW

have S=+s “, +s, 41, W
= This is called rejection sampling +C, -5, +f, W
-C, =S, T, W

= |t is also consistent for conditional
probabilities (i.e., correct in the limit)

Rejection Sampling Likelihood Weighting

= Input: evidence instantiation
= Fori=1,2,..,n
= Sample x, from P(X; | Parents(X;))

= If x, not consistent with evidence
= Reject: return — no sample is generated in this cycle

= Return (xy, Xy, ..., X,)

Likelihood Weighting Likelihood Weighting

= Problem with rejection sampling: = |dea: fix evidence variables and sample the
= |f evidence is unlikely, rejects lots of samples rest
. Evide-nce not exploited as you sample - Probllem: sarﬁple distributic.:r.\ not co?sistent! P(S|C) P(R|C)
= Consider P( Shape | blue ) = Solution: weight by probability of evidence
given parents +c | +s 101 +c [ +r | 0.8
pyramid—green pyramid, blue =3 g'z =l g'i
. : -C +s . -C +r ..
pyramid—red pyramid, blue = Tos ~Tos
@ @ sphere, blue @ sphere, blue
cube,—red 3
. cube, blue P(W|S, R)
sphere—green [ sphere,  blue Samples:
/‘}—3_ \ +s 4r | +w [ 0.99
/ -w [ 001 +C, +5, +I, +W
o [ +w 090
w_| 010
S | +r | +w 090
w1010 w = 1.0x0.1x0.99
o [+w 001
w099




Likelihood Weighting Likelihood Weighting

= Input: evidence instantiation

= w=1.0 = Sampling distribution if z sampled and e fixed evidence
= fori=1,2,..,n 1
= if X;is an evidence variable Sws(z,e) = H P(z;|Parents(Z;)) o
= X, = observation x, for X; i=1

. eI;eSE[ e P = Now, samples have weights o
= sample x; from P(X, | Parents(X)) m

w(z,e) = ][ P(ei|Parents(E;))
i=1

return (Xy, Xy, ..., X,), W
|

= Together, weighted sampling distribution is consistent

Sws(z,€) - w(z, HP z;|Parents(z;) HP ei|Parents(e;))

i1 i=1
= P(z,e)

Likelihood Weighting Gibbs Sampling

Likelihood weighting is good = Likelihood weighting doesn’t solve all our
= We have taken evidence into account as we problems
generate the sample = Evidence influences the choice of downstream
= E.g. here, W’s value will get picked based on the variables, but not upstream ones (C isn’t more
evidence values of S, R likely to get a value matching the evidence)
= More of our samples will reflect the state of the = We would like to consider evidence when we
world suggested by the evidence sample every variable (leads to Gibbs sampling)

Gibbs Sampling Gibbs Sampling Example: P( S | +r)

= Step 1: Fix evidence = Step 2: Initialize other variables

Procedure: keep track of a full instantiation x,, x,, ..., X,. Start with an

v X
arbitrary instantiation consistent with the evidence. Sample one variable " R=+r ° 6 * Randomly
at a time, conditioned on all the rest, but keep evidence fixed. Keep

repeating this for a long time.

= Property: in the limit of repeating this infinitely many times the resulting = Steps 3: Repeat
samples come from the correct distribution (i.e. conditioned on evidence). = Choose a non-evidence variable X

= Rationale: both upstream and downstream variables condition on = Resample X from P(X | all other variables)
evidence

In contrast: likelihood weighting only conditions on upstream evidence, o'@ -> 9'@ - 9.@ - 9.@ - 9.@ - 9.@
and hence weights obtained in likelihood weighting can sometimes be

Xery Sn?a“,‘, Sum of weights over all samples is |nd.|cat|ve. of how many Sample from P(S|+ ¢, —w,+r)  Sample from P(C|+ s, —w,+r) Sdmple from P(W|+ s,+c,+1)
effective” samples were obtained, so we want high weight.



Efficient Resampling of One Variable Bayes’ Net Sampling Summary

« Sample from P(S | +¢, +r, -w) = Prior Sampling P( Q) = Rejection Sampling P(Q | e)

P(S,+e,+r, —w)
P(+c,+r, —w)

_ P(S,+e 1, —w)

- > P(s, +c, +r, —w)

_ P(+¢)P(S| + ¢)P(+r| + ) P(—w]|S, +r)

Y, P(+0)P(s| + o) P(+7| + ¢) P(—wls, +)

P(+c)P(S| 4 ¢)P(+r| + ¢)P(—w|S, +r)

P(+c)P(+r| +¢) 3, P(s| + ¢)P(—wls, +7)

_ _P(S|+e)P(—wl|S, +1)

3, P(s|+ o) P(—wls, +7)

P(S|+ ¢, +r,—w) =

= Many things cancel out — only CPTs with S remain!

= More generally: only CPTs that have resampled variable need to be considered, and
joined together

Further Reading on Gibbs Sampling*

= Gibbs sampling produces sample from the query distribution P(Q | e)
in limit of re-sampling infinitely often

= Gibbs sampling is a special case of more general methods called
Markov chain Monte Carlo (MCMC) methods

= Metropolis-Hastings is one of the more famous MCMC methods (in fact, Gibbs
sampling is a special case of Metropolis-Hastings)

= You may read about Monte Carlo methods — they’re just sampling



