CS 188: Artificial Intelligence

Decision Networks and Value of Information

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Decision Networks

Decision Networks

Decision Networks

- MEU: choose the action which maximizes the expected utility given the evidence
- Can directly operationalize this with decision networks
 - Bayes nets with nodes for utility and actions
 - Lets us calculate the expected utility for each action
- New node types:
 - Chance nodes (just like BNs)

 Actions (rectangles, cannot have parents, act as observed evidence)

 Utility node (diamond, depends on action and chance nodes)

Decision Networks

Action selection

- Instantiate all evidence
- Set action node(s) each possible way
- Calculate posterior for all parents of utility node, given the evidence
- Calculate expected utility for each action
- Choose maximizing action

Decision Networks

Umbrella = leave

$$\begin{split} & \text{EU(leave)} = \sum_{w} P(w) U(\text{leave}, w) \\ & = 0.7 \cdot 100 + 0.3 \cdot 0 = 70 \end{split}$$

Umbrella = take

$$EU(take) = \sum_{w} P(w)U(take, w)$$
$$= 0.7 \cdot 20 + 0.3 \cdot 70 = 35$$

Optimal decision = leave

$$\mathrm{MEU}(\emptyset) = \max_{a} \mathrm{EU}(a) = 70$$

take

rain

70

Decisions as Outcome Trees

Example: Decision Networks

Umbrella = leave

$$\mathrm{EU}(\mathrm{leave}|\mathrm{bad}) = \sum_{w} P(w|\mathrm{bad}) U(\mathrm{leave}, w)$$

 $= 0.34 \cdot 100 + 0.66 \cdot 0 = 34$

Umbrella = take

$$\begin{split} & \text{EU(take|bad)} = \sum_{w} P(w|\text{bad}) U(\text{take}, w) \\ & = 0.34 \cdot 20 + 0.66 \cdot 70 = 53 \end{split}$$

Optimal decision = take

$$\mathrm{MEU}(F = \mathrm{bad}) = \max_{a} \mathrm{EU}(a|\mathrm{bad}) = 53$$

Decisions as Outcome Trees

Ghostbusters Decision Network

Sensor (1,1)
Sensor (1,2)
Sensor (1,3)
Sensor (m,n)

Video of Demo Ghostbusters with Probability

Value of Information

Value of Information

- Idea: compute value of acquiring evidence
 - Can be done directly from decision network
- Example: buying oil drilling rights
 - Two blocks A and B, exactly one has oil, worth k
 - You can drill in one location
 - Prior probabilities 0.5 each, & mutually exclusive
 - Drilling in either A or B has EU = k/2, MEU = k/2
- Question: what's the value of information of O?
 - Value of knowing which of A or B has oil
 - Value is expected gain in MEU from new info
 - Survey may say "oil in a" or "oil in b", prob 0.5 each
 - If we know OilLoc, MEU is k (either way)
 - Gain in MEU from knowing OilLoc?
 - VPI(OilLoc) = k/2
 - Fair price of information: k/2

VPI Example: Weather

MEU with no evidence

$$\mathrm{MEU}(\emptyset) = \max_{a} \mathrm{EU}(a) = 70$$

MEU if forecast is bad

$$MEU(F = bad) = \max_{a} EU(a|bad) = 53$$

MEU if forecast is good

$$\mathrm{MEU}(F=\mathrm{good}) = \max_{a} \mathrm{EU}(a|\mathrm{good}) = 95$$

Forecast distribution

Value of Information

Assume we have evidence E=e. Value if we act now:

$$\mathsf{MEU}(e) = \max_{a} \sum_{s} P(s|e) \ U(s,a)$$

Assume we see that E' = e'. Value if we act then:

$$\mathsf{MEU}(e, e') = \max_{a} \sum_{s} P(s|e, e') \ U(s, a)$$

- BUT E' is a random variable whose value is unknown, so we don't know what e' will be
- Expected value if E' is revealed and then we act:

$$MEU(e, E') = \sum_{e'} P(e'|e)MEU(e, e')$$

 Value of information: how much MEU goes up by revealing E' first then acting, over acting now:

$$VPI(E'|e) = MEU(e, E') - MEU(e)$$

VPI Properties

Nonnegative

$$\forall E', e : \mathsf{VPI}(E'|e) > 0$$

Nonadditive

(think of observing E_i twice)

$$VPI(E_i, E_k|e) \neq VPI(E_i|e) + VPI(E_k|e)$$

Order-independent

$$VPI(E_j, E_k|e) = VPI(E_j|e) + VPI(E_k|e, E_j)$$
$$= VPI(E_k|e) + VPI(E_j|e, E_k)$$

Quick VPI Questions

- The soup of the day is either clam chowder or split pea, but you wouldn't order either one. What's the value of knowing which it is?
- There are two kinds of plastic forks at a picnic. One kind is slightly sturdier. What's the value of knowing which?
- You're playing the lottery. The prize will be \$0 or \$100. You can play any number between 1 and 100 (chance of winning is 1%). What is the value of knowing the winning number?

Value of Imperfect Information?

- No such thing (as we formulate it)
- Information corresponds to the observation of a node in the decision network
- If data is "noisy" that just means we don't observe the original variable, but another variable which is a noisy version of the original one

VPI Question

- VPI(OilLoc) ?
- VPI(ScoutingReport) ?
- VPI(Scout) ?
- VPI(Scout | ScoutingReport) ?
- Generally:

POMDPs

POMDPs

- MDPs have:
 - States S
 - Actions A
 - Transition function P(s'|s,a) (or T(s,a,s'))
 - Rewards R(s,a,s')

- Observations O
- Observation function P(o|s) (or O(s,o))
- POMDPs are MDPs over belief states b (distributions over S)
- We'll be able to say more in a few lectures

Demo: Ghostbusters with VPI

Example: Ghostbusters

In (static) Ghostbusters:

- Belief state determined by evidence to date {e}
- Tree really over evidence sets
- Probabilistic reasoning needed to predict new evidence given past evidence

Solving POMDPs

- One way: use truncated expectimax to compute approximate value of actions
- What if you only considered busting or one sense followed by a bust?
- You get a VPI-based agent!

Video of Demo Ghostbusters with VPI

More Generally*

- General solutions map belief functions to actions
 - Can divide regions of belief space (set of belief functions) into policy regions (gets complex quickly)
 - Can build approximate policies using discretization methods
 - Can factor belief functions in various ways
- Overall, POMDPs are very (actually PSPACE-) hard
- Most real problems are POMDPs, and we can rarely solve then in their full generality

Next Time: Dynamic Models