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Probability Recap

§ Conditional probability

§ Product rule

§ Chain rule 

§ X, Y independent if and only if:

§ X and Y are conditionally independent given Z if and only if:

Reasoning over Time or Space

§ Often, we want to reason about a sequence of observations
§ Speech recognition
§ Robot localization
§ User attention
§ Medical monitoring

§ Need to introduce time (or space) into our models

Markov Models

§ Value of X at a given time is called the state

§ Parameters: called transition probabilities or dynamics, specify how the state 
evolves over time (also, initial state probabilities)

§ Stationarity assumption: transition probabilities the same at all times
§ Same as MDP transition model, but no choice of action
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Conditional Independence

§ Basic conditional independence:
§ Past and future independent given the present
§ Each time step only depends on the previous
§ This is called the (first order) Markov property

§ Note that the chain is just a (growable) BN
§ We can always use generic BN reasoning on it if we 

truncate the chain at a fixed length

Example Markov Chain: Weather

§ States: X = {rain, sun}
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Two new ways of representing the same CPT
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Xt-1 Xt P(Xt|Xt-1)
sun sun 0.9
sun rain 0.1
rain sun 0.3
rain rain 0.7

§ Initial distribution: 1.0 sun

§ CPT P(Xt | Xt-1):



Example Markov Chain: Weather

§ Initial distribution: 1.0 sun

§ What is the probability distribution after one step?

rain sun
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Mini-Forward Algorithm

§ Question: What’s P(X) on some day t?

Forward simulation

X2X1 X3 X4

P (xt) =
X

xt�1

P (xt�1, xt)

=
X

xt�1

P (xt | xt�1)P (xt�1)

Example Run of Mini-Forward Algorithm

§ From initial observation of sun

§ From initial observation of rain

§ From yet another initial distribution P(X1):

P(X1) P(X2) P(X3) P(X¥)P(X4)

P(X1) P(X2) P(X3) P(X¥)P(X4)

P(X1) P(X¥)
…

[Demo: L13D1,2,3]

Video of Demo Ghostbusters Basic Dynamics

Video of Demo Ghostbusters Circular Dynamics Video of Demo Ghostbusters Whirlpool Dynamics



§ Stationary distribution:
§ The distribution we end up with is called 

the stationary distribution of the 
chain

§ It satisfies

Stationary Distributions

§ For most chains:
§ Influence of the initial distribution 

gets less and less over time.
§ The distribution we end up in is 

independent of the initial distribution

P1(X) = P1+1(X) =
X

x

P (X|x)P1(x)

P1

Example: Stationary Distributions

§ Question: What’s P(X) at time t = infinity?

X2X1 X3 X4

Xt-1 Xt P(Xt|Xt-1)
sun sun 0.9
sun rain 0.1
rain sun 0.3
rain rain 0.7

P1(sun) = P (sun|sun)P1(sun) + P (sun|rain)P1(rain)

P1(rain) = P (rain|sun)P1(sun) + P (rain|rain)P1(rain)

P1(sun) = 0.9P1(sun) + 0.3P1(rain)

P1(rain) = 0.1P1(sun) + 0.7P1(rain)

P1(sun) = 3P1(rain)

P1(rain) = 1/3P1(sun)

P1(sun) + P1(rain) = 1

P1(sun) = 3/4

P1(rain) = 1/4Also:

Application of Stationary Distribution: Web Link Analysis

§ PageRank over a web graph
§ Each web page is a state
§ Initial distribution: uniform over pages
§ Transitions:

§ With prob. c, uniform jump to a
random page (dotted lines, not all shown)

§ With prob. 1-c, follow a random
outlink (solid lines)

§ Stationary distribution
§ Will spend more time on highly reachable pages
§ E.g. many ways to get to the Acrobat Reader download page
§ Somewhat robust to link spam
§ Google 1.0 returned the set of pages containing all your 

keywords in decreasing rank, now all search engines use link 
analysis along with many other factors (rank actually getting 
less important over time)

Application of Stationary Distributions: Gibbs Sampling*

§ Each joint instantiation over all hidden and query 
variables is a state: {X1, …, Xn} = H U Q

§ Transitions:
§ With probability 1/n resample variable Xj according to 

P(Xj | x1, x2, …, xj-1, xj+1, …, xn, e1, …, em)

§ Stationary distribution:
§ Conditional distribution P(X1, X2 , … , Xn|e1, …, em)

§ Means that when running Gibbs sampling long enough 
we get a sample from the desired distribution

§ Requires some proof to show this is true!

Hidden Markov Models Pacman – Sonar (P4)

[Demo: Pacman – Sonar – No Beliefs(L14D1)]



Video of Demo Pacman – Sonar (no beliefs) Hidden Markov Models

§ Markov chains not so useful for most agents
§ Need observations to update your beliefs

§ Hidden Markov models (HMMs)
§ Underlying Markov chain over states X
§ You observe outputs (effects) at each time step

X5X2
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X1 X3 X4

E2 E3 E4 E5

Example: Weather HMM

Rt-1 Rt P(Rt|Rt-1)

+r +r 0.7

+r -r 0.3
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-r -r 0.7

Umbrellat-1

Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8

Umbrellat Umbrellat+1

Raint-1 Raint Raint+1

§ An HMM is defined by:
§ Initial distribution:
§ Transitions:
§ Emissions:

P (Xt | Xt�1)
P (Et | Xt)

P (Xt | Xt�1)

P (Et | Xt)

Example: Ghostbusters HMM

§ P(X1) = uniform

§ P(X|X�) = usually move clockwise, but 

sometimes move in a random direction or 

stay in place

§ P(Rij|X) = same sensor model as before:

red means close, green means far away.
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[Demo: Ghostbusters – Circular Dynamics – HMM (L14D2)]

Video of Demo Ghostbusters – Circular Dynamics -- HMM Conditional Independence

§ HMMs have two important independence properties:

§ Markov hidden process: future depends on past via the present

§ Current observation independent of all else given current state

§ Quiz: does this mean that evidence variables are guaranteed to be independent?

§ [No, they tend to correlated by the hidden state]
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Real HMM Examples

§ Speech recognition HMMs:
§ Observations are acoustic signals (continuous valued)
§ States are specific positions in specific words (so, tens of thousands)

§ Machine translation HMMs:
§ Observations are words (tens of thousands)
§ States are translation options

§ Robot tracking:
§ Observations are range readings (continuous)
§ States are positions on a map (continuous)

Filtering / Monitoring

§ Filtering, or monitoring, is the task of tracking the distribution 
Bt(X) = Pt(Xt | e1, …, et) (the belief state) over time

§ We start with B1(X) in an initial setting, usually uniform

§ As time passes, or we get observations, we update B(X)

§ The Kalman filter was invented in the 60’s and first 
implemented as a method of trajectory estimation for the 
Apollo program

Example: Robot Localization

t=0
Sensor model: can read in which directions there is a wall, 

never more than 1 mistake
Motion model: may not execute action with small prob.

10Prob

Example from 
Michael Pfeiffer

Example: Robot Localization

t=1
Lighter grey: was possible to get the reading, but less likely b/c 

required 1 mistake

10Prob

Example: Robot Localization

t=2

10Prob

Example: Robot Localization

t=3

10Prob



Example: Robot Localization

t=4

10Prob

Example: Robot Localization

t=5

10Prob

Inference: Base Cases

E1

X1

X2X1

Passage of Time

§ Assume we have current belief P(X | evidence to date)

§ Then, after one time step passes:

§ Basic idea: beliefs get “pushed” through the transitions
§ With the “B” notation, we have to be careful about what time step t the belief is about, and what 

evidence it includes

X2X1

=
X

xt

P (Xt+1, xt|e1:t)

=
X

xt

P (Xt+1|xt, e1:t)P (xt|e1:t)

=
X

xt

P (Xt+1|xt)P (xt|e1:t)

§ Or compactly:

B0(Xt+1) =
X

xt

P (X 0|xt)B(xt)

P (Xt+1|e1:t)

Example: Passage of Time

§ As time passes, uncertainty �accumulates�

T = 1 T = 2 T = 5

(Transition model: ghosts usually go clockwise)

Observation
§ Assume we have current belief P(X | previous evidence):

§ Then, after evidence comes in:

§ Or, compactly:

E1

X1

B0(Xt+1) = P (Xt+1|e1:t)

P (Xt+1|e1:t+1) = P (Xt+1, et+1|e1:t)/P (et+1|e1:t)
/Xt+1 P (Xt+1, et+1|e1:t)

= P (et+1|Xt+1)P (Xt+1|e1:t)

= P (et+1|e1:t, Xt+1)P (Xt+1|e1:t)

B(Xt+1) /Xt+1 P (et+1|Xt+1)B
0(Xt+1)

§ Basic idea: beliefs “reweighted” 
by likelihood of evidence

§ Unlike passage of time, we have 
to renormalize



Example: Observation

§ As we get observations, beliefs get reweighted, uncertainty �decreases�

Before observation After observation

Example: Weather HMM

Rt Rt+1 P(Rt+1|Rt)

+r +r 0.7

+r -r 0.3

-r +r 0.3

-r -r 0.7

Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8
Umbrella1 Umbrella2

Rain0 Rain1 Rain2

B(+r) = 0.5
B(-r)  = 0.5

B’(+r) = 0.5
B’(-r)  = 0.5

B(+r) = 0.818
B(-r)  = 0.182

B’(+r) = 0.627
B’(-r)  = 0.373

B(+r) = 0.883
B(-r)  = 0.117

The Forward Algorithm
§ We are given evidence at each time and want to know

§ We can derive the following updates
We can normalize as we go if we 
want to have P(x|e) at each time 

step, or just once at the end…

Online Belief Updates

§ Every time step, we start with current P(X | evidence)
§ We update for time:

§ We update for evidence:

§ The forward algorithm does both at once (and doesn’t normalize)

X2X1

X2

E2

Pacman – Sonar (P4)

[Demo: Pacman – Sonar – No Beliefs(L14D1)]

Video of Demo Pacman – Sonar (with beliefs)



Next Time: Particle Filtering and Applications of HMMs


