CS 188: Artificial Intelligence HMMs, Particle Filters, and Applications

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Today

HMMs

- Particle filters
- Demos!
- Most-likely-explanation queries

Applications:

- Robot localization / mapping
- Speech recognition (later)

Recap: Reasoning Over Time

Markov models

Hidden Markov models

X	Е	Р
rain	umbrella	0.9
rain	no umbrella	0.1
sun	umbrella	0.2
sun	no umbrella	0.8

Inference: Base Cases

$$P(X_1|e_1)$$

$$P(x_1|e_1) = P(x_1, e_1)/P(e_1)$$

$$\propto_{X_1} P(x_1, e_1)$$

$$= P(x_1)P(e_1|x_1)$$

$$P(X_2)$$

$$P(x_2) = \sum_{x_1} P(x_1, x_2)$$
$$= \sum_{x_1} P(x_1) P(x_2 | x_1)$$

Inference: Base Cases

$$P(X_2)$$

$$P(x_2) = \sum_{x_1} P(x_1, x_2)$$

$$= \sum_{x_1} P(x_1) P(x_2 | x_1)$$

Passage of Time

Assume we have current belief P(X | evidence to date)

$$B(X_t) = P(X_t|e_{1:t})$$

Then, after one time step passes:

$$P(X_{t+1}|e_{1:t}) = \sum_{x_t} P(X_{t+1}, x_t|e_{1:t})$$

$$= \sum_{x_t} P(X_{t+1}|x_t, e_{1:t}) P(x_t|e_{1:t})$$

$$= \sum_{x_t} P(X_{t+1}|x_t) P(x_t|e_{1:t})$$

Or compactly:

$$B'(X_{t+1}) = \sum_{x_t} P(X'|x_t)B(x_t)$$

- Basic idea: beliefs get "pushed" through the transitions
 - With the "B" notation, we have to be careful about what time step t the belief is about, and what evidence it includes

Example: Passage of Time

As time passes, uncertainty "accumulates"

T = 1

T = 2

(Transition model: ghosts usually go clockwise)

T = 5

Inference: Base Cases

$$P(X_1|e_1)$$

$$P(x_1|e_1) = P(x_1, e_1)/P(e_1)$$

$$\propto_{X_1} P(x_1, e_1)$$

$$= P(x_1)P(e_1|x_1)$$

Observation

Assume we have current belief P(X | previous evidence):

$$B'(X_{t+1}) = P(X_{t+1}|e_{1:t})$$

Then, after evidence comes in:

$$P(X_{t+1}|e_{1:t+1}) = P(X_{t+1}, e_{t+1}|e_{1:t})/P(e_{t+1}|e_{1:t})$$

$$\propto_{X_{t+1}} P(X_{t+1}, e_{t+1}|e_{1:t})$$

$$= P(e_{t+1}|e_{1:t}, X_{t+1})P(X_{t+1}|e_{1:t})$$

$$= P(e_{t+1}|X_{t+1})P(X_{t+1}|e_{1:t})$$

Or, compactly:

$$B(X_{t+1}) \propto_{X_{t+1}} P(e_{t+1}|X_{t+1})B'(X_{t+1})$$

- Basic idea: beliefs "reweighted" by likelihood of evidence
- Unlike passage of time, we have to renormalize

Example: Observation

As we get observations, beliefs get reweighted, uncertainty "decreases"

Before observation

After observation

 $B(X) \propto P(e|X)B'(X)$

Filtering

Elapse time: compute P($X_t \mid e_{1:t-1}$)

$$P(x_t|e_{1:t-1}) = \sum_{x_{t-1}} P(x_{t-1}|e_{1:t-1}) \cdot P(x_t|x_{t-1})$$

Observe: compute P($X_t \mid e_{1:t}$)

$$P(x_t|e_{1:t}) \propto P(x_t|e_{1:t-1}) \cdot P(e_t|x_t)$$

$$P(X_1)$$
 <0.5, 0.5> Prior on X_1

$$P(X_1 \mid E_1 = umbrella)$$
 <0.82, 0.18> Observe

$$P(X_2 \mid E_1 = umbrella)$$
 <0.63, 0.37> Elapse time

$$P(X_2 \mid E_1 = umb, E_2 = umb)$$
 <0.88, 0.12> Observe

[Demo: Ghostbusters Exact Filtering (L15D2)]

Particle Filtering

Particle Filtering

- Filtering: approximate solution
- Sometimes |X| is too big to use exact inference
 - |X| may be too big to even store B(X)
 - E.g. X is continuous
- Solution: approximate inference
 - Track samples of X, not all values
 - Samples are called particles
 - Time per step is linear in the number of samples
 - But: number needed may be large
 - In memory: list of particles, not states
- This is how robot localization works in practice
- Particle is just new name for sample

0.0	0.1	0.0
0.0	0.0	0.2
0.0	0.2	0.5

Representation: Particles

- Our representation of P(X) is now a list of N particles (samples)
 - Generally, N << |X|
 - Storing map from X to counts would defeat the point
- P(x) approximated by number of particles with value x
 - So, many x may have P(x) = 0!
 - More particles, more accuracy
- For now, all particles have a weight of 1

(3,3)	
(2,3)	
(3,3)	
(3,2)	
(3,3)	
(3,2)	
(1 2)	

(3,3) (3,3) (2,3)

Particles:

Particle Filtering: Elapse Time

 Each particle is moved by sampling its next position from the transition model

$$x' = \text{sample}(P(X'|x))$$

- This is like prior sampling samples' frequencies reflect the transition probabilities
- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
 - If enough samples, close to exact values before and after (consistent)

(2,2)

Particle Filtering: Observe

Slightly trickier:

- Don't sample observation, fix it
- Similar to likelihood weighting, downweight samples based on the evidence

$$w(x) = P(e|x)$$

$$B(X) \propto P(e|X)B'(X)$$

 As before, the probabilities don't sum to one, since all have been downweighted (in fact they now sum to (N times) an approximation of P(e))

Particles: (3,2)(2,3)(3,2)(3,1)(3,3)(3,2)(1,3)(2,3)(3,2)(2,2)Particles: (3,2) w=.9 (2,3) w=.2 (3,2) w=.9 (3,1) w=.4 (3,3) w=.4 (3,2) w=.9 (1,3) w=.1 (2,3) w=.2 (3.2) w=.9

(2,2) w=.4

Particle Filtering: Resample

- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution (i.e. draw with replacement)
- This is equivalent to renormalizing the distribution
- Now the update is complete for this time step,
 continue with the next one

Particles:

(3,2) w=.9

(2,3) w=.2

(3,2) w=.9

(3,1) w=.4

(3,3) w=.4

(3,2) w=.9 (1,3) w=.1

(2,3) w=.2

(3,2) w=.9

(2,2) w=.4

(New) Particles:

(3,2)

(2,2)

(3,2) (2,3)

(3,3)

(3,2)

(1,3)

(2,3)

(3,2)

(3,2)

Recap: Particle Filtering

Particles: track samples of states rather than an explicit distribution

[Demos: ghostbusters particle filtering (L15D3,4,5)]

Robot Localization

In robot localization:

- We know the map, but not the robot's position
- Observations may be vectors of range finder readings
- State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store B(X)
- Particle filtering is a main technique

Particle Filter Localization (Sonar)

[Video: global-sonar-uw-annotated.avi]

Particle Filter Localization (Laser)

[Video: global-floor.gif]

Robot Mapping

- SLAM: Simultaneous Localization And Mapping
 - We do not know the map or our location
 - State consists of position AND map!
 - Main techniques: Kalman filtering (Gaussian HMMs) and particle methods

[Demo: PARTICLES-SLAM-mapping1-new.avi]

Particle Filter SLAM – Video 1

[Demo: PARTICLES-SLAM-mapping1-new.avi]

Particle Filter SLAM – Video 2

[Demo: PARTICLES-SLAM-fastslam.avi]

Dynamic Bayes Nets

Dynamic Bayes Nets (DBNs)

- We want to track multiple variables over time, using multiple sources of evidence
- Idea: Repeat a fixed Bayes net structure at each time
- Variables from time t can condition on those from t-1

[Demo: pacman sonar ghost DBN model (L15D6)]

Pacman – Sonar (P4)

[Demo: Pacman – Sonar – No Beliefs(L14D1)]

Exact Inference in DBNs

- Variable elimination applies to dynamic Bayes nets
- Procedure: "unroll" the network for T time steps, then eliminate variables until $P(X_T | e_{1:T})$ is computed

 Online belief updates: Eliminate all variables from the previous time step; store factors for current time only

DBN Particle Filters

- A particle is a complete sample for a time step
- Initialize: Generate prior samples for the t=1 Bayes net
 - Example particle: $G_1^a = (3,3) G_1^b = (5,3)$
- Elapse time: Sample a successor for each particle
 - Example successor: $G_2^a = (2,3) G_2^b = (6,3)$
- Observe: Weight each <u>entire</u> sample by the likelihood of the evidence conditioned on the sample
 - Likelihood: $P(E_1^a | G_1^a) * P(E_1^b | G_1^b)$
- Resample: Select prior samples (tuples of values) in proportion to their likelihood

Most Likely Explanation

HMMs: MLE Queries

- HMMs defined by
 - States X
 - Observations E
 - Initial distribution: $P(X_1)$
 - Transitions: $P(X|X_{-1})$
 - Emissions: P(E|X)

- New query: most likely explanation: $\underset{x_{1:t}}{\operatorname{arg\,max}} P(x_{1:t}|e_{1:t})$
- New method: the Viterbi algorithm

State Trellis

State trellis: graph of states and transitions over time

- Each arc represents some transition $x_{t-1} \rightarrow x_t$
- Each arc has weight $P(x_t|x_{t-1})P(e_t|x_t)$
- Each path is a sequence of states
- The product of weights on a path is that sequence's probability along with the evidence
- Forward algorithm computes sums of paths, Viterbi computes best paths

Forward / Viterbi Algorithms

Forward Algorithm (Sum)

Viterbi Algorithm (Max)

$$f_t[x_t] = P(x_t, e_{1:t})$$

$$m_t[x_t] = \max_{x_{1:t-1}} P(x_{1:t-1}, x_t, e_{1:t})$$

$$= P(e_t|x_t) \sum_{x_{t-1}} P(x_t|x_{t-1}) f_{t-1}[x_{t-1}]$$

$$= P(e_t|x_t) \max_{x_{t-1}} P(x_t|x_{t-1}) m_{t-1}[x_{t-1}]$$