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Today

= HMMs
= Particle filters
= Demos!
* Most-likely-explanation queries

= Applications:
= Robot localization / mapping
= Speech recognition (later)



[Demo: Ghostbusters Markov Model (L15D1)]

Recap: Reasoning Over Time

= Markov models |
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* Hidden Markov models P(E|X)
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Inference: Base Cases

P(X1le1)

P(z1le1) = P(x1,e1)/P(e1)
X X4 P(.’E]_,el)

= P(xz1)P(e1|z1)
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P(X>)

P(zp) =) P(z1,22)
1

= > P(x1)P(xp|z1)
1



Inference: Base Cases
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P(X>)

P(zp) =) P(z1,22)
1

= > P(z1)P(z2|z1)
1



Passage of Time

= Assume we have current belief P(X | evidence to date) @_’@
B(X:) = P(Xtle1:t)

= Then, after one time step passes:

P(Xt—kl‘el:t) = ZP(Xt+1axt|€1:t)

Tt
~ ZP<Xt+1|xtvel:t)P(SEt|€1:t) = Or compactly:
S (X P(X'
- ZP(Xt+1|xt)P(xt’€1:t) t+1) Z |z ) B(x4)

= Basic idea: beliefs get “pushed” through the transitions

= With the “B” notation, we have to be careful about what time step t the belief is about, and what
evidence it includes



Example: Passage of Time

= As time passes, uncertainty “accumulates” (Transition model: ghosts usually go clockwise)

<0.01/<0.01<0.01(<0.01/|<0.01/{<0.01
<0.01 <0.01<0.Dl <0.01 <0.01
<0.01/<0.01<0.01(<0.01/|<0.01/{<0.01

n
<0.01/|<0.01 <0.01/{<0.01}|<0.01

n .
u <0.01/|<0.01/{<0.01|<0.01

T=5




Inference: Base Cases

P(X1le1)

P(x1ler) = P(x1,e1)/P(e1)
X X4 P(CB]_,G]_)

= P(xz1)P(e1|z1)



Observation

= Assume we have current belief P(X | previous evidence):

B'(Xi41) = P(Xiy1ler)

= Then, after evidence comes in:

P(Xiy1lerir1) = P(Xev1,eiq1ler)/Plers1lers)
XXiq1 P(Xt—|—1,€t—|—1‘€1:t)

= P(€t+1’61:t7Xt—l—l)P(Xt—l-l‘eltt)
— P(€t+1’Xt—|—1)P(Xt—I—1|€1it)

= Basic idea: beliefs “reweighted”
" Or, compactly: by likelihood of evidence

B(Xi41) xx,., Plet41]|Xe41)B' (Xi41) = Unlike passage of time, we have
to renormalize




Example: Observation

= As we get observations, beliefs get reweighted, uncertainty “decreases”

<0.01 <0.01/|<0.01/|<0.01 <0.01/|<0.01}|<0.011<0.01|<0.01/{<0.01

S o o : Before observation After observation

B(X) «x P(e|X)B'(X)




Filtering

Elapse time: compute P( X, | e;{)
Plaileri) = ) Pleealeri) - Plailer-1) | S e
I a0 I I
Observe: compute P( X, | ;)
Pxilers) oc Plailers_1) - Pleg|z:)

Belief: <P(rain), P(sun)>

G @ P(Xy) <0.5,0.5> Prior on X,

P(X, | By = umbrella)  <0.82,0.18>  Observe

)
e Q P(X5 | E1 = umbrella)  <0.63,0.37> Elapse time
)

P(X5 | E1 = umb, E; = umb <0.88, 0.12> Observe

[Demo: Ghostbusters Exact Filtering (L15D2)]



Particle Filtering
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Particle Filtering

Filtering: approximate solution

Sometimes | X] is too big to use exact inference
= |X| may be too big to even store B(X)
= E.g. Xis continuous

Solution: approximate inference
= Track samples of X, not all values
= Samples are called particles
= Time per step is linear in the number of samples
= But: number needed may be large
®" |n memory: list of particles, not states

This is how robot localization works in practice

Particle is just new name for sample

0.0 0.1 0.0
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Representation: Particles

= Qur representation of P(X) is now a list of N particles (samples)
= Generally, N << |X]
= Storing map from X to counts would defeat the point

= P(x) approximated by number of particles with value x
= S0, many x may have P(x) = 0!
= More particles, more accuracy

" For now, all particles have a weight of 1

Particles:
(3,3)
(2,3)
(3,3)
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)




Particle Filtering: Elapse Time

= Each particle is moved by sampling its next
position from the transition model

r' = sample(P(X'|z))

= This is like prior sampling — samples’ frequencies
reflect the transition probabilities

= Here, most samples move clockwise, but some move in
another direction or stay in place

= This captures the passage of time

= |If enough samples, close to exact values before and
after (consistent)

Particles:
(3,3)
(2,3)
(3,3)
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Particles:
(3,2)
(2,3)
(3,2)
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)
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Particle Filtering: Observe

= Slightly trickier:

Don’t sample observation, fix it

Similar to likelihood weighting, downweight
samples based on the evidence

w(x) = P(e|x)
B(X) « P(e|]X)B'(X)
As before, the probabilities don’t sum to one,

since all have been downweighted (in fact they
now sum to (N times) an approximation of P(e))

Particles:
(3,2)
(2,3)
(3,2)
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)

Particles:
(3,2) w=.9
(2,3) w=.2
(3,2) w=.9
(3,1) w=.4
(3,3) w=.4
(3,2) w=.9
(1,3) w=.1
(2,3) w=.2
(3,2) w=.9
(2,2) w=.4




Particle Filtering: Resample

= Rather than tracking weighted samples, we
resample

= N times, we choose from our weighted sample
distribution (i.e. draw with replacement)

= This is equivalent to renormalizing the
distribution

= Now the update is complete for this time step,
continue with the next one

Particles:
(3,2) w=.9
(2,3) w=.2
(3,2) w=.9
(3,1) w=.4
(3,3) w=.4
(3,2) w=.9
(1,3) w=.1
(2,3) w=.2
(3,2) w=.9
(2,2) w=.4

(New) Particles:
(3,2)
(2,2)
(3,2)
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)




Recap: Particle Filtering

= Particles: track samples of states rather than an explicit distribution

Weight

Elapse
@ ® ——_ e | @
o | o ®
@ ()
® ® ® o2
Q@
Particles: Particles:
(3,3) (3,2)
(2,3) (2,3)
(3,3) (3,2)
(3,2) (3,1)
(3,3) (3,3)
(3,2) (3,2)
(1,2) (1,3)
(3,3) (2,3)
(3,3) (3,2)
(2,3) (2,2)

Resample
@
) @ @
@ _0
® | ¢%
@
e @

Particles:
(3,2) w=.9
(2,3) w=.2
(3,2) w=.9
(3,1) w=.4
(3,3) w=.4
(3,2) w=.9
(1,3) w=.1
(2,3) w=.2
(3,2) w=.9
(2,2) w=.4

(New) Particles:
(3,2)
(2,2)
(3,2)
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)

[Demos: ghostbusters particle filtering (L15D3,4,5)]



Robot Localization

In robot localization:

We know the map, but not the robot’s position
Observations may be vectors of range finder readings

State space and readings are typically continuous (works
basically like a very fine grid) and so we cannot store B(X)

Particle filtering is a main technique

DIRECTORY




Particle Filter Localization (Sonar)

Global localization with |
- Sonar sensors

'
.
.
.
|
.

[Video: global-sonar-uw-annotated.avi]



Particle Filter Localization (Laser)

[Video: global-floor.gif]



Robot Mapping

= SLAM: Simultaneous Localization And Mapping
= We do not know the map or our location _—
= State consists of position AND map!

-
= Main techniques: Kalman filtering (Gaussian HMMs) S~ —— 1(
and particle methods

DP-SLAM, Ron Parr
[Demo: PARTICLES-SLAM-mappingl-new.avi]



Particle Filter SLAM — Video 1
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[Demo: PARTICLES-SLAM-mappingl-new.avi]



Particle Filter SLAM — Video 2

[Demo: PARTICLES-SLAM-fastslam.avi]



Dynamic Bayes Nets




Dynamic Bayes Nets (DBNs)

= We want to track multiple variables over time, using
multiple sources of evidence

= |dea: Repeat a fixed Bayes net structure at each time

= Variables from time t can condition on those from t-1

t=1 t=2 t=3

Gla G a » Gsa ______ -——=—)

4 2
”»
Glb ///;\[%// > G3b 2
@) @@ @@

= Dynamic Bayes nets are a generalization of HMMs

[Demo: pacman sonar ghost DBN model (L15D6)]



Pacman — Sonar (P4)

r — )
74 CS188 Pacman L

14.0 21.0 26.0

[Demo: Pacman — Sonar — No Beliefs(L14D1)]



Exact Inference in DBNs

= Variable elimination applies to dynamic Bayes nets

= Procedure: “unroll” the network for T time steps, then eliminate variables until P(X;|e,.;)

is computed
t=1 t=2 t=3

G,? ‘/G_l

2

1

= Online belief updates: Eliminate all variables from the previous time step; store factors
for current time only




DBN Particle Filters

A particle is a complete sample for a time step

Initialize: Generate prior samples for the t=1 Bayes net
= Example particle: G,2=(3,3) G,*=(5,3)

Elapse time: Sample a successor for each particle
= Example successor: G,?=(2,3) G,”=(6,3)

Observe: Weight each entire sample by the likelihood of the evidence conditioned on
the sample

= Likelihood: P(E,? |G,?) * P(E,* | G,P)

Resample: Select prior samples (tuples of values) in proportion to their likelihood



Most Likely Explanation

o PR




HMMs: MLE Queries

= HMMs defined by
= States X
Observations E

= |nitial distribution: P(X7) ‘ ‘ ‘ ‘
" Transitions: P(X|X_1)
= Emissions: P(FE|X)

= New query: most likely explanation: arg max P(x1-¢|e1:+)

L]t

= New method: the Viterbi algorithm



State Trellis

State trellis: graph of states and transitions over time

sun sun sun sun
rain rain rain rain
X4 X5 e Xy

Each arc represents some transition Lt—1 — Tt

Each arc has weight P (z¢|xi—1)P(et|xt)

Each path is a sequence of states

The product of weights on a path is that sequence’s probability along with the evidence
Forward algorithm computes sums of paths, Viterbi computes best paths



Forward / Viterbi Algorithms

sun sun
rain rain
X1 X5

Forward Algorithm (Sum)
ftlxe] = P(xt,e1:4)

= P(et|zt) Y Plxtlri—1)fr—1lzi—1]

Li—1

sun

rain

sun

rain

XN

Viterbi Algorithm (Max)

mi[x] = max P(x1:4—1,%t, €1:¢)

T1:t—1

= P(et|z) Q?fp(ﬂftpft—l)mt—l[wt—l]



