CS 188: Artificial Intelligence
HMMs, Particle Filters, and Applications

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All CS188materials are available at http://ai.berkeley.edu.]

Today

= HMMs
= Particle filters
= Demos!
= Most-likely-explanation queries

= Applications:
= Robot localization / mapping
= Speech recognition (later)

[Demo: Ghostbusters Markov Model (L15D1)

Recap: Reasoning Over Time

= Markov models
(D> -~ @@

P(X;) P(X|X_1) - D

* Hidden Markov models P(E|X)
rain umbrella 0.9
rain no umbrella 0.1
@ @ @ sun umbrella 0.2
sun no umbrella 0.8

Inference: Base Cases

i A 06

P(X1le1) P(X2)
P(z1le1) = P(z1,e1)/P(e1) P(z2) =Y P(z1,z2)
XX P(:E]_,e]_) = ZP(xl)P(Jlgl.’El)

= P(z1)P(e1|r1)

Inference: Base Cases

s -6

P(X>)
P(z3) =Y P(x1,72)

=Y P(x1)P(x2|z1)

Passage of Time

= Assume we have current belief P(X | evidence to date) @@
B(Xt) = P(Xtle1:t)

» Then, after one time step passes:

P(Xii1lert) = ZP(Xt+1,IIJt|€1:t)

Tt
= Z P(Xt+1]:ct7 61;t)P(IL't’61:t) = Or Compactly:

S B'(Xi1) = 3 P(X|a)B(r)
e Z P(Xt+1’56t)P(Jit|€1:t) -

T

= Basic idea: beliefs get “pushed” through the transitions

= With the “B” notation, we have to be careful about what time step t the belief is about, and what
evidence it includes

Example: Passage of Time

* As time passes, uncertainty “accumulates” (Transition model: ghosts usually go clockwise)

oofofoopob e o o] ook

= = EEETT

= T

ITTTTT
T=1

0.

T=5

Inference: Base Cases

P(X1le1)

P(z1le1) = P(x1,e1)/P(e1)
XX, P(ZL‘]_,@]_)
= P(z1)P(e1l|r1)

Observation

= Assume we have current belief P(X | previous evidence): "~
, |
B'(Xi41) = P(Xetaler) @

= Then, after evidence comes in: ‘
P(Xt+1\€1:t+1) = P(Xt+1,€t+1\€1:t)/P(€t+1|€1:t)
XXyy1 P(Xt+1aet—i—1|€1:t)

= P(€t+1|61:t,Xt-i—l)P(Xt-l-l‘el:t)
= P(esy1|Xeq1) P(Xey1ler:t)

= Basic idea: beliefs “reweighted
= Or, compactly: by likelihood of evidence

B(Xi41) xx,y, Ples1|Xes1)B' (Xi41) = Unlike passage of time, we hav
to renormalize

Example: Observation

= As we get observations, beliefs get reweighted, uncertainty “decreases”

' <°.01 ©*

° <0-01 o
- T

1o 0 ; Before observation After observation

B(X) « P(e|X)B'(X)

Filtering

Elapse time: compute P(X, | e;.4)

P($t|€1:t—1) = Z P(ﬂit—1|€1:t—1) : P(lb“t|$t—1)

Tt—1

Observe: compute P(X, | e,.)

P(xiler.s) o< P(xilers—1) - Pleg|xy)

<0.01 <0.01<0401 <0.01//<0.01

MM
H

Belief: <P(rain), P(sun)>

° ° P(X)

P(X; | Ey = umbrella

)
e Q P(X5 | By = umbrella)
)

P(X5 | By = umb, E5 = umb

<0.5, 0.5>
<0.82,0.18>
<0.63,0.37>

<0.88,0.12>

Prior on X,
Observe
Elapse time

Observe

[Demo: Ghostbusters Exact Filtering (L15D2)

Particle Filtering

Particle Filtering

= Filtering: approximate solution
0.0 0.1 0.0
= Sometimes |X] is too big to use exact inference
= |X]| may be too big to even store B(X) 00 | 0.0 | 0.2
= E.g. Xis continuous
= Solution: approximate inference 00 | 02 105
= Track samples of X, not all values
= Samples are called particles
= Time per step is linear in the number of samples
= But: number needed may be large ®
= |n memory: list of particles, not states
= This is how robot localization works in practice e
= Particle is just new name for sample e
C X
e
Representation: Particles
= Qur representation of P(X) is now a list of N particles (samples) o [9°
e o0
= Generally, N << |X]
®
= Storing map from X to counts would defeat the point °
= P(x) approximated by number of particles with value x
= So, many x may have P(x) = 0! particles:
= More particles, more accuracy o)
(33)

= For now, all particles have a weight of 1

(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Particle Filtering: Elapse Time

= Each particle is moved by sampling its next

Particles: —
position from the transition model o) s :0:\
(33)
/ , (32) ®
' = sample(P(X'|x)) 3] e
12)
L . . , . (33)
= This is like prior sampling — samples’ frequencies (3,3)
reflect the transition probabilities (23)
= Here, most samples move clockwise, but some move in
another direction or stay in place Particles:
(32)
(23) e Io
(3.2) ®)
. . 3,1
= This captures the passage of time i *.
)
= |f enough samples, close to exact values before and 8;; ®
after (consistent) (2,3) ®
(32)
(22)
i . i Particles:
= Slightly trickier: e o o
. - (3.2) e | o
= Don’t sample observation, fix it (3,1)
(3,3)) ?.
= Similar to likelihood weighting, downweight gg L
samples based on the evidence (23) P
(3.2)
22)
w(xz) = P(e|z)
/
B(X) X P(6|X)B (X) Particles:
(3,2) w=.9
(2,3) w=.2 ° @
(3,2) w=.9 ° @
= As before, the probabilities don’t sum to one, (31) w=4 .
since all have been downweighted (in fact they o)y o |85
now sum to (N times) an approximation of P(e)) gg; w;
)3) W= °
(3,2) w=.9

(2,2) w=4

Particle Filtering: Resample

= Rather than tracking weighted samples, we

resample

= N times, we choose from our weighted sample

distribution (i.e. draw with replacement)

= This is equivalent to renormalizing the

distribution

= Now the update is complete for this time step,
continue with the next one

Particles:
(3,2) w=.9
(2,3) w=.2
(3,2) w=.9
(3,1) w=.4
(3,3) w=.4
(3,2) w=.9
(1,3) w=.1
(2,3) w=.2
(3,2) w=9
(2,2) w=.4

(New) Particles:

(3,2)
(2,2)
(3,2)
(2,3)
(3.3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)

* %
d0
® o

Recap: Particle Filtering

= Particles: track samples of states rather than an explicit distribution

Elapse Weight Resample
o |0 —mMm——_|)) °)
o |e% e ® | o ®
®) Ll e e
e O ® %) e | ¢%
o . °
Particles: Particles: Particles: (New) Particles:
(3,3) (3,2) (3,2) w=.9 (3,2)
(2,3) (2,3) (2,3) w=.2 (2,2)
(3,3) (3,2) (3,2) w=.9 (3,2)
(3,2) (3,1) (3,1) w=4 (2,3)
(3,3) (3,3) (3,3) w=4 (3,3)
(3,2) (3,2) (3,2) w=.9 (3,2)
(1,2) (1,3) (1,3) w=.1 (1,3)
(3,3) (2,3) (2,3) w=.2 (2,3)
(3,3) (3,2) (3,2) w=.9 (3,2)
(2,3) (2,2) (2,2) w=.4 (3,2)

[Demos: ghostbusters particle filtering (L15D3,4,5!

Robot Localization

= |n robot localization:

We know the map, but not the robot’s position
Observations may be vectors of range finder readings

State space and readings are typically continuous (works
basically like a very fine grid) and so we cannot store B(X)

Particle filtering is a main technique

Particle Filter Localization (Sonar)

[Video: global-sonar-uw-annotated.avi

Particle Filter Localization (Laser)

[Video: global-floor.git

Robot Mapping

= SLAM: Simultaneous Localization And Mapping
= We do not know the map or our location
= State consists of position AND map!

= Main techniques: Kalman filtering (Gaussian HMMs)
and particle methods

DP-SLAM, Ron Parr

[Demo: PARTICLES-SLAM-mappingl-new.a\

Particle Filter SLAM — Video 1

(-

[Demo: PARTICLES-SLAM-mappingl-new.a\

Particle Filter SLAM — Video 2

[Demo: PARTICLES-SLAM-fastslam.a\

Dynamic Bayes Nets

Dynamic Bayes Nets (DBNs)

We want to track multiple variables over time, using
multiple sources of evidence

Idea: Repeat a fixed Bayes net structure at each time
Variables from time t can condition on those from t-1

t=1 t=2

s

Dynamic Bayes nets are a generalization of HMMs

[Demo: pacman sonar ghost DBN model (L15D6)

Pacman — Sonar (P4)

- - |
T4 CS188 Pacman 2]

14.0 21.0 26.0

[Demo: Pacman — Sonar — No Beliefs(L14D1)

Exact Inference in DBNs

= Variable elimination applies to dynamic Bayes nets
* Procedure: “unroll” the network for T time steps, then eliminate variables until P(X;|e,.;)

is computed
t=1 t=2

ok
)
G,’

= Online belief updates: Eliminate all variables from the previous time step; store factors
for current time only

DBN Particle Filters

A particle is a complete sample for a time step

Initialize: Generate prior samples for the t=1 Bayes net
» Example particle: G,2= (3,3) G,*=(5,3)

Elapse time: Sample a successor for each particle
= Example successor: G,2=(2,3) G,* = (6,3)

Observe: Weight each entire sample by the likelihood of the evidence conditioned on
the sample

» Likelihood: P(E,? |G,?) * P(E,* | G,?)

Resample: Select prior samples (tuples of values) in proportion to their likelihood

Most Likely Explanation

HMMs: MLE Queries

* HMMs definedby 7N /7N /N o
= States X — ° >
= Observations E
®» |nitial distribution: P(X71)
= Transitions: P(X|X_1)

= Emissions: P(E|X)

= New query: most likely explanation: arg max P(z1:¢e1:¢)
L1t

= New method: the Viterbi algorithm

State Trellis

= State trellis: graph of states and transitions over time

sun I>< sun } I sun I I sun ‘
| |><l |><| ‘
| |] | | |

‘ rain rain rain rain

X1 X2 XN

= Each arc represents some transition Tt—1 — Lt

= Eacharc has weight P(x¢|zi—1)P(et|xt)

= Each path is a sequence of states

= The product of weights on a path is that sequence’s probability along with the evidence
= Forward algorithm computes sums of paths, Viterbi computes best paths

Forward / Viterbi Algorithms

sun :><] sun |>< sun :><] sun

Il B LEI e
X1 X5 ... XN
Forward Algorithm (Sum) Viterbi Algorithm (Max)
feled = P, e1:4) mi[z] = max P(z1:4-1, 2t e1:t)
= Plear) 3 Plader-1)fi-lor-a) = Pletler) max P(edlee—1)mi—1lzi-1]

