CS 188: Artificial Intelligence Today
HMMs, Particle Filters, and Applications

= HMMs
= Particle filters
= Demos!
= Most-likely-explanation queries

= Applications:
= Robot localization / mapping
= Speech recognition (later)

aterials are available at http://ai.berkeley.edu.]

[These slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All CS188

[Demo: Ghostbusters Markov Model (L15D1)

Recap: Reasoning Over Time Inference: Base Cases

= Markov models 03 @
0000~ | f ¥ A
= [@]

P(X1) P(X|X_1)

= Hidden Markov models P(E|X
(1 P(X1]er) P(X2)

O -

rain umbrella 0.9 P(z1le1) = P(z1,e1)/P(e1) P(z2) =) P(x1,2)

£

rain no umbrella 0.1 oxx, P(x1,e1) _ ZP(II)P(12|11)
e e e e sun umbrella 0.2 = P(21)P(e1]a1) 1

sun no umbrella 0.8

Inference: Base Cases Passage of Time

= Assume we have current belief P(X | evidence to date)
00
Q B(Xp) = P(Xile1:)
b @@ = Then, after one time step passes:

P(Xt+1|61:t) = ZP(Xt+1,xt|€1:t)

Tt
P(X5) = Z P(Xyq1|ze, e1:4) Pai]er) = Or compactly:
Tt
B'(X, = P(X'|z,)B
P(xg) = P(x1,22) = ZP(XHH%)P((T:\EL:) (Xevr) Izt (X'lwe) Blai)
£ o
= ;P(II)P(”III) = Basicidea: beliefs get “pushed” through the transitions

= With the “B” notation, we have to be careful about what time step t the belief is about, and what
evidence it includes

Example: Passage of Time

Inference: Base Cases

= As time passes, uncertainty “accumulates” (Transition model: ghosts usually go clockwise)

Observation

P(X1le1)

P(x1le1) = P(z1,e1)/P(e1)
oxx, P(x1,e1)

= P(z1)P(e1|r1)

Example: Observation

= Assume we have current belief P(X | previous evidence):

i/
B/(XtJrl) = P(Xt+1‘elit) @

= Then, after evidence comes in:
P(XtJrl‘(”l:tH) = P(Xt+178t+1‘€1:t)/P(€t+1|61;t)
XXiq1 P(Xy41, €41lert)
= P(ert1ler:s, Xey1) P(Xega
= P(ep1]Xet1)P(Xesalers)

el:t)

Basic idea: beliefs “reweighted
® Or, compactly: by likelihood of evidence

B(Xti1) xx,py Plerr1|Xe1)B' (Xeg1) = Unlike passage of time, we hav
to renormalize

Filtering

= As we get observations, beliefs get reweighted, uncertainty “decreases”

After observation

Before observation

B(X) « P(e|X)B'(X)

Particle Filtering

Elapse time: compute P(X, | e;..,)
P(ziler.i—1) = Z Pz ileri—1) - P(xe|zi-1)
T—1

Observe: compute P(X, | e,,)

P(xilery) oc P(xileri—1) - Plegay)

Belief: <P(rain), P(sun)>
P(X) <0.5,0.5> Prior on X,

P(X, | Ey = umbrella) ~ <0.82,0.18> Observe

P(X5 | Ey = umbrella) <0.63,0.37> Elapse time

P(X, | Ey = umb, B> = umb) <0.88,0.12> Observe
[Demo: Ghostbusters Exact Filtering (L15D2)

Particle Filtering Representation: Particles

= Filtering: approximate solution
. _ ') 0 o = Qur representation of P(X) is now a list of N particles (samples) o [%°
= Sometimes |X| is too big to use exact inference + Generally, N << |X| e o0
= |X| may be too big to even store B(X 0.0 | 00 | 02 ! °
é | X v) 8 X = Storing map from X to counts would defeat the point ° °
= E.g. Xis continuous
= Solution: approximate inference 0.0 RGNS
* Track samples of X, not all values P(x) approximated by number of particles with value x
= Samples are called particles * So, many x may have P(x) = 0! Partices:
= Time per step is linear in the number of samples = More particles, more accuracy S;;
= But: number needed may be large ° (33)
= In memory: list of particles, not states) . {ii;
= For now, all particles have a weight of 1 32)
= This is how robot localization works in practice (1] 5
(33)
= Particle is just new name for sample L] @3
(X}
o e
Particle Filtering: Elapse Time Particle Filtering: Observe
o - Partcles
= Each particle is moved by sampling its next partcls: = Slightly trickier: 32)
L. o 6.3 ° . 23) e| @
position from the transition model [° 62) ® o| @
33) = Don’t sample observation, fix it @) o
32) 33) °
2’ = sample(P(X'|x)) 63 © = Similar to likelihood weighting, downweight Pl °
‘i’? samples based on the evidence 23) °
63 e
= This is like prior sampling — samples’ frequencies (3.3) 22)
reflect the transition probabilities @3) w(z) = P(e|z)
= Here, most samples move clockwise, but some move in . -
another direction or stay in place parce B(X) x P(e|X)B'(X)
&2 o2]fe SIBIE
= This captures the passage of time . o *. . A_s before, the probabilities c_ion’t sum to one, o
= |f enough samples, close to exact values before and gi; ° since all hfve,\?flen downwelght(led (Itn factft:ey ° °
after (consistent) liii o now sum to (N times) an approximation of P(e)) N
@2
Particle Filtering: Resample Recap: Particle Filtering
)) = Particles: track samples of states rather than an explicit distribution
= Rather than tracking weighted samples, we s
resample (23) w=2 . 8 : Elapse Weight Resample
(32) w-9
{ii? i o |e® ° — o| o o | o
= N times, we choose from our weighted sample ﬁ:g s Ll Ld L4 bl °
T . 3 3 ° [2 le® ©e®
distribution (i.e. draw with replacement) @3z o Q o 82 A o |20
(2,2) w=4
e i, D . H
= This is equivalent to renormalizing the
distribution Pa(v;mslles. Pa[r;nz\)es (I;a;;lc\efg (Ne;/z) Particles;
(New) Particles: (2:3] [2:3) ll:ll x;z (1:2’
(2,2) L (33) 32 (3,2) w=9 (3.2)
= Now the update is complete for this time step, B2 e o o [o
continue with the next one 33) ® | % e s (= o
[° 33) 23) 23) w-2 @3
23) ° (33) (32) (3,2) w=9 (3.2)
(2) (23) 22) 22) w=4 (32)

(3.2)

[Demos: ghostbusters particle filtering (L15D3,4,5

Robot Localization

Particle Filter Localization (Sonar)

= In robot localization:
We know the map, but not the robot’s position

Observations may be vectors of range finder readings

State space and readings are typically continuous (works
basically like a very fine grid) and so we cannot store B(X)
Particle filtering is a main technique

Particle Filter Localization (Laser)

[Video: global-sonar-uw-annotated.avi

Robot Mapping

& owzs
= \‘\j\?%

[Video: global-floor.git

Particle Filter SLAM — Video 1

= SLAM: Simultaneous Localization And Mapping
= We do not know the map or our location
= State consists of position AND map!

= Main techniques: Kalman filtering (Gaussian HMMs)
and particle methods

DP-SLAM, Ron Parr
[Demo: PARTICLES-SLAM-mappingl-new.a\

Particle Filter SLAM — Video 2

[Demo: PARTICLES-SLAM-mappingl-new.a\

[Demo: PARTICLES-SLAM-fastslam.a\

Dynamic Bayes Nets

Dynamic Bayes Nets (DBNs)

Pacman — Sonar (P4)

= We want to track multiple variables over time, using
multiple sources of evidence

= |dea: Repeat a fixed Bayes net structure at each time
= Variables from time t can condition on those from t-1

t=1 t=2

= Dynamic Bayes nets are a generalization of HMMs

)
\ |

[Demo: pacman sonar ghost DBN model (L15D6)

Exact Inference in DBNs

74 CS188 Pacman - — i

SCORE: -6 21.0 26.0

[Demo: Pacman — Sonar — No Beliefs(L14D1)

DBN Particle Filters

= Variable elimination applies to dynamic Bayes nets

= Procedure: “unroll” the network for T time steps, then eliminate variables until P(X;|e,.;)
is computed
t=1 t=2 t=3

@ N &
O ‘@ i

= Online belief updates: Eliminate all variables from the previous time step; store factors
for current time only

Most Likely Explanation

A particle is a complete sample for a time step

Initialize: Generate prior samples for the t=1 Bayes net
= Example particle: G,2=(3,3) G,*= (5,3)
Elapse time: Sample a successor for each particle

= Example successor: G,*= (2,3) G,°= (6,3)

Observe: Weight each entire sample by the likelihood of the evidence conditioned on
the sample

= Likelihood: P(E;® |G,) * P(E," | G,?)

Resample: Select prior samples (tuples of values) in proportion to their likelihood

\
Sa

S
Sk

A
o - —=
- iy

HMMs: MLE Queries State Trellis

State trellis: graph of states and transitions over time

= HMMs defined b — —
= States X Y ° ° ° @ _____ > IE sun | sun | sun
= Observations E @%
= |nitial distribution: P(X1) = =

= Transitions: P(X|X_1) .

= Emissions: P(E|X) *1 X2 X
= Each arc represents some transition L1 — Tt
= Eacharc has weight P (@¢|zi—1)P(et|zt)
= New query: most likely explanation: argz{nax P(z1:le1:) = Each path is a sequence of states
it

= The product of weights on a path is that sequence’s probability along with the evidence
= New method: the Viterbi algorithm

Forward algorithm computes sums of paths, Viterbi computes best paths

Forward / Viterbi Algorithms

Forward Algorithm (Sum) Viterbi Algorithm (Max)
filed] = P(ay, ea:) myle] = max Pe1:-1, 2, e1:4)

= P(etlze) Y- Patler—1)fi-1lei-1) = P(etlat) Q’)%P(le—l)m/ 1lze-1]

Ty

