Announcements

Project 0: Python Tutorial

= Due yesterday / Monday at 11:59pm (0 points in class, but pulse check to see you are in + get to know
submission system)

Homework 0: Math self-diagnostic
= QOptional, but important to check your preparedness for second half

Project 1: Search
= Will go out this week
= Longer than most, and best way to test your programming preparedness

Sections
= Start this week, can go to any but priority in the one you signed up for on piazza

Instructional accounts: online (see our Welcome post on piazza)

Pinned posts on piazza

Reminder: We don’t use bCourses [we use: class website, piazza, gradescope]

How about Al Research?

TREVOR
DARRELL*

PIETER
ABBEEL"

P

KEN MICHAEL I.
GOLDBERG" JORDAN*

BARTLETT*

JENNIFER
LISTGARTEN"

JITENDRA
MALIK*

Yy
.

BAYEN
LAURENT RON JACK
EL GHAOUI FEARING GALLANT

#-
.

ANCA
DRAGAN"™

DAN
KLEIN*

733

-

STUART
RUSSELL"

9

JOHN
DENERO

="
E

JOSEPH
GONZALEZ

ALYOSHA
EFROS*

)

SERGEY
LEVINE*

a

CLAIRE
TOMLIN®

R
iy
e

MICHAEL
DEWEESE

ALISON
GOPNIK

MARK
MUELLER

MARTI A.

GRIFFITHS HEARST

-
A\

GIREEJA
RANADE

CHRISTOS JONATHAN
PAPADIMITRIOU RAGAN-KELLEY

@ \;.’

HANNAH MARTIN
STUART WAINWRIGHT

.
»
\'-‘:-;_ -

<a :
JEROME A. NELSON
FELDMANTY MORGANT

BRUNO
OLSHAUSEN

) (@)
-E'/ R

DAWN
SONG

(®)\

-
% -

12
KOUSHIL
SREENATH

SHANKAR
SASTRY

e
& 4

LAURA
WALLER YU

https://bair.berkeley.edu

https://bair.berkeley.edu/

CS 188: Artificial Intelligence

Search

Instructors: Pieter Abbeel & Dan Klein

University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley (ai.berkeley.edu).]

Today

= Agents that Plan Ahead

= Search Problems

= Uninformed Search Methods
* Depth-First Search
= Breadth-First Search

= Uniform-Cost Search

Agents that Plan

Reflex Agents

Reflex agents:

» Choose action based on current percept (and
maybe memory)

= May have memory or a model of the world’s
current state

= Do not consider the future consequences of
their actions

» Consider how the world IS

Can a reflex agent be rational?

[Demo: reflex optimal (L2D1)]
[Demo: reflex optimal (L2D2)]

Video of Demo Reflex Optimal

SCORE: 0

Video of Demo Reflex Odd

SCORE: 0

Planning Agents

= Planning agents:
= Ask “what if”

= Decisions based on (hypothesized)
consequences of actions

= Must have a model of how the world evolves in
response to actions

= Must formulate a goal (test)
= Consider how the world WOULD BE

= Optimal vs. complete planning

= Planning vs. replanning

[Demo: re-planning (L2D3)]
[Demo: mastermind (L2D4)]

Video of Demo Replanning

B . @

= T

L . & & & » »

SCORE: 0

Video of Demo Mastermind

SCORE:

Search Problems

Search Problems

= A search problem consists of:

e 1 1[I LI

m A successor function N% 1.0 u
(with actions, costs) ! —

. -
lIEH’ 1.0

= A start state and a goal test

= A solution is a sequence of actions (a plan) which
transforms the start state to a goal state

Search Problems Are Models

Example: Traveling in Romania

= State space:
= Cities
= Successor function:

= Roads: Go to adjacent city with
cost = distance

= Start state:
= Arad

= Goal test:

= |s state == Bucharest?

Eforie

[Giurgiu

= Solution?

What’s in a State Space?

The world state includes every last detail of the environment

SCORE:

A search state keeps only the details needed for planning (abstraction)

" Problem: Pathing

States: (x,y) location
Actions: NSEW

Successor: update location
only

Goal test: is (x,y)=END

= Problem: Eat-All-Dots

States: {(x,y), dot booleans}
Actions: NSEW

Successor: update location
and possibly a dot boolean

Goal test: dots all false

State Space Sizes?

= World state:
= Agent positions: 120
"= Food count: 30
= Ghost positions: 12
= Agent facing: NSEW

= How many
= World states?
120x(23%)x(12%)x4
= States for pathing?
120
= States for eat-all-dots?
120x(239)

Quiz: Safe Passage

®" Problem: eat all dots while keeping the ghosts perma-scared
= What does the state space have to specify?

" (agent position, dot booleans, power pellet booleans, remaining scared time)

State Space Graphs and Search Trees

State Space Graphs

= State space graph: A mathematical
representation of a search problem
= Nodes are (abstracted) world configurations
* Arcs represent successors (action results)
" The goal test is a set of goal nodes (maybe only one)

" |n a state space graph, each state occurs only
once!

= We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

State Space Graphs

= State space graph: A mathematical
representation of a search problem
= Nodes are (abstracted) world configurations
* Arcs represent successors (action results)
" The goal test is a set of goal nodes (maybe only one)

" |n a state space graph, each state occurs only
once!

= We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

Tiny state space graph for a tiny
search problem

Search Trees

! _ This is now / start
"N'zl.O/ “E”, 1.0
u ! _ Possible futures
I I

= A search tree:

= A “what if” tree of plans and their outcomes

The start state is the root node

Children correspond to successors

Nodes show states, but correspond to PLANS that achieve those states
For most problems, we can never actually build the whole tree

State Space Graphs vs. Search Trees

/State Space Graph\

Each NODE in in
the search tree is
an entire PATH in
the state space
graph.

We construct both
on demand — and
we construct as
little as possible.

-

Search Tree

a

S
~
d e
T — —
b c e h r
I I — N 1
a a r p q f
AN 1 ' -
p f q C G
' —_~ .
g ¢ G a

Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph: How big is its search tree (from S)?

X0

Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph: How big is its search tree (from S)?
AN
a b
© O NA
b G a G
N\ N\
a/ G é G

/N /N

Important: Lots of repeated structure in the search tree!

Tree Search

Search Example: Romania

Eforie

Searching with a Search Tree

Arad

CArad > CFagaras> COradea @mniou vics

= Search:
» Expand out potential plans (tree nodes)
* Maintain a fringe of partial plans under consideration
" Try to expand as few tree nodes as possible

General Tree Search

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

" |[mportant ideas:
= Fringe
= Expansion
= Exploration strategy

" Main question: which fringe nodes to explore?

Example: Tree Search

Example: Tree Search

S
@
(® h o or
P U NG
® © p q f
| SN
q G

s2>e

S2p

s=>d—2>b

s>d—2>c

s=>d=>e
s2>d—2>e—2>h

s=>d oo p
s=>2daeo2> e f
s2d2e2>r>f>c
s=2da2em2rafa0

Depth-First Search

Depth-First Search

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Search Algorithm Properties

Search Algorithm Properties

Complete: Guaranteed to find a solution if one exists?
Optimal: Guaranteed to find the least cost path?
Time complexity?

: 4 1 node
Space complexity?
b nodes
2

Cartoon of search tree: | b* nodes

= bisthe branching factor m tiers <

" mis the maximum depth

= solutions at various depths

\ b™ nodes

Number of nodes in entire tree?
" 1+b+b%2+..bM"=0(b™)

Depth-First Search (DFS) Properties

= What nodes DFS expand?

= Some left prefix of the tree. 1 node
= Could process the whole tree! b nodes
= If mis finite, takes time O(b™) b2 nodes
_ m tiers <
" How much space does the fringe take?
= Only has siblings on path to root, so O(bm)
" |sit complete? b™M nodes

= m could be infinite, so only if we prevent
cycles (more later)

" |sit optimal?

= No, it finds the “leftmost” solution,
regardless of depth or cost

Breadth-First Search

Strategy: expand a
shallowest node first

Implementation: Fringe

Breadth-First Search

is a FIFO queue
4 ®
@ © e
Search
e © ® ® © @
Tiers | N N |
a h r p q f
N | | RN
_ q f q |C
PN ;

Breadth-First Search (BFS) Properties

= What nodes does BFS expand?

~

= Processes all nodes above shallowest solution b 1 node

= Let depth of shallowest solution be s . b nodes

, s tiers <

= Search takes time O(b®) / b2 nodes
* How much space does the fringe take? - / o \ bs nodes

= Has roughly the last tier, so O(b®)

@

" |sit complete? o b™ nodes

= s must be finite if a solution exists, so yes!

" |sit optimal?
= Only if costs are all 1 (more on costs later)

Quiz: DFS vs BFS

Quiz: DFS vs BFS

= When will BFS outperform DFS?

= When will DFS outperform BFS?

[Demo: dfs/bfs maze water (L2D6)]

Video of Demo Maze Water DFS/BFS (part 1)

Video of Demo Maze Water DFS/BFS (part 2)

Iterative Deepening

" |dea: get DFS’s space advantage with BFS’s
time / shallow-solution advantages
= Run a DFS with depth limit 1. If no solution...
= Run a DFS with depth limit 2. If no solution...
= Run a DFS with depth limit 3.

" [sn’t that wastefully redundant?

" Generally most work happens in the lowest
level searched, so not so bad!

Cost-Sensitive Search

(o (F—s T,

BFS finds the shortest path in terms of number of actions.
It does not find the least-cost path. We will now cover
a similar algorithm which does find the least-cost path.

Uniform Cost Search

Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost)

Uniform Cost Search

Cost
contours

Uniform Cost Search (UCS) Properties

= What nodes does UCS expand?

= Processes all nodes with cost less than cheapest solution!

= |f that solution costs C* and arcs cost at least &, then the
“effective depth” is roughly C*/¢

C*/e “tiers” <
= Takes time O(b¢"¢) (exponential in effective depth)

= How much space does the fringe take?
* Has roughly the last tier, so O(b¢"%)

M)
U/

" |sit complete?

= Assuming best solution has a finite cost and minimum arc cost
is positive, yes!

" |sit optimal?

= Yes! (Proof next lecture via A*)

Uniform Cost Issues

= Remember: UCS explores increasing cost
contours

" The good: UCS is complete and optimal!

" The bad:
= Explores options in every “direction”
®= No information about goal location Goal

[Demo: empty grid UCS (L2D5)]
[Demo: maze with deep/shallow
water DFS/BFS/UCS (L2D7)]

= We'll fix that soon!

Video of Demo Empty UCS

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 1)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 2)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 3)

The One Queue

= All these search algorithms are the
same except for fringe strategies L\@_L_go\lﬂ%;@{\pﬂl . \i%
= Conceptually, all fringes are priority |

gueues (i.e. collections of nodes with
attached priorities)

= Practically, for DFS and BFS, you can
avoid the log(n) overhead from an
actual priority queue, by using stacks
and queues

= Can even code one implementation
that takes a variable queuing object

Search and Models

= Search operates over
models of the world

" The agent doesn’t
actually try all the plans
out in the real world!

" Planning is all “in
simulation”

" Your search is only as
good as your models...

Search Gone Wrong?

WT ——-— Y To] 4y ; v
= ! S Eal Microsoft*
MAPQVEST. = ig 1:: 2 ARCTIC OCEAN PER . MapPoint
‘ Q |) % Loy
QE\e & - ICELAND N

",

: RUSSIA .

- He ki Tver
esmg s

>

Smé)lonsk@
Vi mus I "‘.w..-"

B.a;qstoké’ BELARUS, "
n_7 POLAND ~Kiev: ®

~
"@79 km 500 1000 e
Sy ' mi 2000 400 600

/ Start: Haugesund, Rogaland, Norway

» 2005 MapQ .com, Inc. End: Trondheim, Ser-Trandelag, Norway
Total Distance: 2713.2 Kilometers
Estimated Total Time: 47 hours, 31 minutes

nrk. no/allridmdro

