Announcements

Project 0: Python Tutorial

= Due yesterday / Monday at 11:59pm (0 points in class, but pulse check to see you are in + get to know

submission system)

Homework 0: Math self-diagnostic
= Optional, but important to check your preparedness for second half

Project 1: Search
= Will go out this week
= Longer than most, and best way to test your programming preparedness

Sections
= Start this week, can go to any but priority in the one you signed up for on piazza

Instructional accounts: online (see our Welcome post on piazza)
Pinned posts on piazza

Reminder: We don’t use bCourses [we use: class website, piazza, gradescope]

CS 188: Artificial Intelligence

Search

Instructors: Pieter Abbeel & Dan Klein

University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley (ai.berkeley.edu).]

How about Al Research?

Today

h

It

o0 nASANCRELLEY

tps://bair.berkeley.edu

anan

= Agents that Plan Ahead

= Search Problems

= Uninformed Search Methods

= Depth-First Search
= Breadth-First Search
= Uniform-Cost Search

Agents that Plan

Video of Demo Reflex Optimal

Reflex Agents

Syde - Loigae -

SCORE: 0

= Reflex agents:

= Choose action based on current percept (and
maybe memory)

= May have memory or a model of the world’s
current state

= Do not consider the future consequences of
their actions

= Consider how the world IS

= Can a reflex agent be rational?

[Demo: reflex optimal (L2D1)]
[Demo: reflex optimal (L2D2)]

Video of Demo Reflex Odd

SCORE:

Planning Agents Video of Demo Replanning

= Planning agents:
= Ask “what if”

= Decisions based on (hypothesized)
consequences of actions

= Must have a model of how the world evolves in
response to actions

= Must formulate a goal (test)
= Consider how the world WOULD BE

= Optimal vs. complete planning SCORE: 0

= Planning vs. replanning

[Demo: re-planning (L2D3)]
[Demo: mastermind (L2D4)]

Video of Demo Mastermind Search Problems

Search Problems

= A search problem consists of:

gece 1.1 [.I.1]

= A successor function N 1.0
(with actions, costs) —
—

e 10

= Astart state and a goal test

= Asolution is a sequence of actions (a plan) which
transforms the start state to a goal state

Example: Traveling in Romania

Search Problems Are Models

= State space:
= C(ities
= Successor function:

= Roads: Go to adjacent city with
cost = distance

= Start state:
= Arad
= Goal test:
= |s state == Bucharest?

= Solution?

What's in a State Space?

The world state includes every last detail of the environment

SCORE:

A search state keeps only the details needed for planning (abstraction)

= Problem: Pathing

States: (x,y) location
Actions: NSEW

Successor: update location
only
Goal test: is (x,y)=END

= Problem: Eat-All-Dots

States: {(x,y), dot booleans}
Actions: NSEW

Successor: update location
and possibly a dot boolean

Goal test: dots all false

State Space Sizes? Quiz: Safe Passage

= World state:
= Agent positions: 120
= Food count: 30
= Ghost positions: 12
= Agent facing: NSEW

= How many
= World states?
120x(23%)x(122)x4
= States for pathing?
120
= States for eat-all-dots?

= Problem: eat all dots while keeping the ghosts perma-scared

= What does the state space have to specify?
120x(2%) = (agent position, dot booleans, power pellet booleans, remaining scared time)

State Space Graphs and Search Trees State Space Graphs

= State space graph: A mathematical
representation of a search problem

Il
B -

T

= Nodes are (abstracted) world configurations

= Arcs represent successors (action results) \ /
= The goal test is a set of goal nodes (maybe only one) /' \ /<
= |n a state space graph, each state occurs only E n
once! N / \

= We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

LU EL R
kn n H na
L1
Il .

State Space Graphs

Search Trees

= State space graph: A mathematical
representation of a search problem

= Nodes are (abstracted) world configurations
= Arcs represent successors (action results)

<4m——

W10 — €10

This is now / start

u _ Possible futures

= The goal test is a set of goal nodes (maybe only one)

= |n a state space graph, each state occurs only

once!

= We can rarely build this full graph in memory

(it’s too big), but it’s a useful idea

Tiny state space graph for a tiny
search problem

= Asearch tree:

= A “what if” tree of plans and their outcomes
= The start state is the root node

= Children correspond to successors

= Nodes show states, but correspond to PLANS that achieve those states

= For most problems, we can never actually build the whole tree

State Space Graphs vs. Search Trees

Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph:

How big is its search tree (from S)?

KState Space Graph \ Each NODE in in f

little as possible. k

the search tree is Search Tree
an entire PATH in
the state space S
graph. P 5
e — N
b c e h r
1 1~ —~
a a h r p q f
We construct both —~ 1 . -
on demand — and p q f 9 ¢ G
g —
we construct as q c G a
a

Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph: How big is its search tree (from S)?

Important: Lots of repeated structure in the search tree!

Search Example: Romania

Tree Search

Searching with a Search Tree

= Search:
= Expand out potential plans (tree nodes)
= Maintain a fringe of partial plans under consideration
= Try to expand as few tree nodes as possible

General Tree Search Example: Tree Search

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy

if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

end

= |mportant ideas:
= Fringe
= Expansion
= Exploration strategy

= Main question: which fringe nodes to explore?

Example: Tree Search Depth-First Search

2 L @

/w h r aq s>d>b

I I /b P s>d>c¢

a a ® p q f s> dDe
AN N s>d>e>h

|
pg® 9 ¢ ¢ PEVEOE
s> d>e> >t
a
Q‘ﬁ@ s>d>e>r>f>c
s d2e2r2 26
a

Depth-First Search Search Algorithm Properties

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Search Algorithm Properties Depth-First Search (DFS) Properties

= Complete: Guaranteed to find a solution if one exists? * What nodes DFS expand?
= QOptimal: Guaranteed to find the least cost path? = Some left prefix of the tree. 1 node
= Time complexity? = Could process the whole tree! b nodes
= Space complexity? 1 node = If mis finite, takes time O(b™) b2 nodes
b nodes X m tiers
, = How much space does the fringe take?
= Cartoon of search tree: b nodes ibli
: i = Only has siblings on path to root, so O(bm)
= b is the branching factor mtiers
= mis the maximum depth = |sit complete? b™ nodes

= solutions at various depths = m could be infinite, so only if we prevent

b™ nodes cycles (more later)

= Number of nodes in entire tree?

= |sit optimal?
= 1+b+b?+...bm=0(b™)

= No, it finds the “leftmost” solution,
regardless of depth or cost

Breadth-First Search Breadth-First Search

Strategy: expand a
shallowest node first

Implementation: Fringe
is a FIFO queue

Search

Tiers

Breadth-First Search (BFS) Properties Quiz: DFS vs BFS

= What nodes does BFS expand?

= Processes all nodes above shallowest solution b 1 node
= Let depth of shallowest solution be s b nodes

s tiers

= Search takes time O(b®) b2 nodes
= How much space does the fringe take? bs nodes
= Has roughly the last tier, so O(b®)
@]
= |s it complete? b™ nodes

= s must be finite if a solution exists, so yes!

= |s it optimal?
= Only if costs are all 1 (more on costs later)

Quiz: DFS vs BFS

= When will BFS outperform DFS?

= When will DFS outperform BFS?

[Demo: dfs/bfs maze water (L2D6)]

Video of Demo Maze Water DFS/BFS (part 2)

Video of Demo Maze Water DFS/BFS (part 1)

Iterative Deepening

= |dea: get DFS’s space advantage with BFS’s
time / shallow-solution advantages
= Run a DFS with depth limit 1. If no solution...
= Run a DFS with depth limit 2. If no solution...
= Run a DFS with depth limit 3.

= [sn’t that wastefully redundant?

= Generally most work happens in the lowest
level searched, so not so bad!

Cost-Sensitive Search Uniform Cost Search

BFS finds the shortest path in terms of number of actions.
It does not find the least-cost path. We will now cover
a similar algorithm which does find the least-cost path.

Uniform Cost Search Uniform Cost Search (UCS) Properties

= What nodes does UCS expand?
= Processes all nodes with cost less than cheapest solution!

= |f that solution costs C* and arcs cost at least &, then the
“effective depth” is roughly C*/¢
Takes time O(b€™%) (exponential in effective depth)

Strategy: expand a
cheapest node first:

Fringe is a priority queue

riority: cumulative cost)
(p Y) C*/¢ “tiers”

= How much space does the fringe take?
= Has roughly the last tier, so O(b€"%)

= |s it complete?

Cost
contours

= Assuming best solution has a finite cost and minimum arc cost
is positive, yes!

= |sit optimal?

= Yes! (Proof next lecture via A¥)

Uniform Cost Issues Video of Demo Empty UCS

= Remember: UCS explores increasing cost
contours

= The good: UCS is complete and optimal!

= The bad:
= Explores options in every “direction”
= No information about goal location

= \We'll fix that soon! [Demo: empty grid UCS (L2D5)]
[Demo: maze with deep/shallow

water DFS/BFS/UCS (L2D7)]

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 1) Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 2)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 3)

Search and Models

The One Queue

= Search operates over
models of the world

It's only
a model...

= The agent doesn’t
actually try all the plans
out in the real world!

= Planning is all “in
simulation”

= Your search is only as
good as your models... ”

= All these search algorithms are the
same except for fringe strategies @_\'&*b\iﬂ,\l@l \ B
= Conceptually, all fringes are priority

queues (i.e. collections of nodes with
attached priorities)

= Practically, for DFS and BFS, you can
avoid the log(n) overhead from an
actual priority queue, by using stacks
and queues

Can even code one implementation
that takes a variable queuing object

Search Gone Wrong?

ARCTIC QCEAN

ICELAND.

