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Linear Classifiers




Feature Vectors
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Some (Simplified) Biology

= Very loose inspiration: human neurons

Cell body or Soma



Linear Classifiers

" |nputs are feature values
= Each feature has a weight
= Sum is the activation

activationy(z) =) w; - fi(z) =w- f(x)

= |f the activation is: o —
= Positive, output +1 f —2— Y =>07 >
= Negative, output -1 Fy f—




Weights

= Binary case: compare features to a weight vector

» Learning: figure out the weight vector from examples
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Decision Rules




Binary Decision Rule

" |n the space of feature vectors

= Examples are points
= Any weight vector is a hyperplane

" One side corresponds to Y=+1
= Other corresponds to Y=-1
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Weight Updates




Learning: Binary Perceptron

= Start with weights =0
" For each training instance:

= Classify with current weights

= |f correct (i.e., y=y*), no change!

= |f wrong: adjust the weight vector




Learning: Binary Perceptron

= Start with weights =0
" For each training instance:
= Classify with current weights

1L i we f(x) >0
YT i w fle) <0

y o f

= |f correct (i.e., y=y*), no change!

= |f wrong: adjust the weight vector by
adding or subtracting the feature
vector. Subtract if y* is -1.

w=w+y" f



Examples: Perceptron

= Separable Case
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Multiclass Decision Rule

" |f we have multiple classes:
= A weight vector for each class:

Wy
= Score (activation) of a class y:

= Prediction highest score wins

y = arg max wy - f(x)
Y
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Binary = multiclass where the negative class has weight zero



Learning: Multiclass Perceptron

Start with all weights =0
Pick up training examples one by one
Predict with current weights

y = argmax, wy - f(x)

If correct, no change!

If wrong: lower score of wrong answer,
raise score of right answer

wy = wy — f(x)

Wopx = Wyy* +f($>
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Properties of Perceptrons

. . . Separable
= Separability: true if some parameters get the training set
perfectly correct + .
- vy,
= Convergence: if the training is separable, perceptron will - +
eventually converge (binary case) -

"= Mistake Bound: the maximum number of mistakes (binary

case) related to the margin or degree of separability Non-Separable

. k - +
Mmistakes < 5—2



Problems with the Perceptron

Noise: if the data isn’t separable,
weights might thrash

= Averaging weight vectors over time
can help (averaged perceptron)

Mediocre generalization: finds a
“barely” separating solution

training
Overtraining: test / held-out >
accuracy usually rises, then falls ©
= Qvertraining is a kind of overfitting § test
© held-out

iterations



Improving the Perceptron




Non-Separable Case: Deterministic Decision

Even the best linear boundary makes at least one mistake




Non-Separable Case: Probabilistic Decision
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How to get probabilistic decisions?

Perceptron scoring: z = w - f(x)

f  z=w-f(x) verypositive =2 want probability going to 1

f  z2=w-f(x) verynegative =2 want probability goingto 0

Sigmoid function o] Tl e ]
¢(Z)=1+e‘z
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Best w?

= Maximum likelihood estimation:

w

max [l(w) = max ZlogP(y(i)M(i);w)

. . 1
. (1) _ (1) ) —
with: P(y ‘|‘1|33 ,w) 1 + e—w f(z®)

1

P(y(z) — —1|x(i);’£U) — 1] 1+ e—w-f(x(i))

= Logistic Regression



Separable Case: Deterministic Decision — Many Options
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Separable Case: Probabilistic Decision — Clear Preference
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Multiclass Logistic Regression

w1 - f biggest
= Recall Perceptron: T
= A weight vector for each class: ’lUy
= Score (activation) of a class y: Wy - f(.CU) w3
w2
= Prediction highest scorewins ¢y = arg max Wy - f(g;) ws - f w3 - f
Y biggest biggest
" How to make the scores into probabilities?
Z Z Z
el e~? e~

21,225,223 7 ) )

€7l + €72 +e*3  efl re*2 t e’ efl +e*2 e

\ J \ )
| |

original activations softmax activations




Best w?

= Maximum likelihood estimation:

max [l(w) = max ZlogP(y(i)M(i);w)

w

(i) (0) ENORACHY
with: P(y ‘aj 7w) — Zy ewy-f(a:'(i))

= Multi-Class Logistic Regression



Next Lecture

= Optimization

= j.e., how do we solve:

max [l(w) = max ZlogP(y(i)M(i);w)

w



