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Perceptrons and Logistic Regression
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Feature Vectors Some (Simplified) Biology

f(ﬂ?) = Very loose inspiration: human neurons
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Linear Classifiers Weights

= Binary case: compare features to a weight vector

Inputs are feature values = Learning: figure out the weight vector from examples
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Decision Rules Binary Decision Rule

= |n the space of feature vectors
= Examples are points
= Any weight vector is a hyperplane

= One side corresponds to Y=+1
= QOther corresponds to Y=-1
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Weight Updates Learning: Binary Perceptron

= Start with weights =0
= For each training instance:
= Classify with current weights

= |f correct (i.e., y=y*), no change!

= |f wrong: adjust the weight vector

Learning: Binary Perceptron Examples: Perceptron

= Start with weights =0

clgnt = Separable Case
= For each training instance: w

= Classify with current weights
, y - f
)+ it we f(x) >0
-1 if w- f(z) <0 !

= |f correct (i.e., y=y*), no change!

= |f wrong: adjust the weight vector by
adding or subtracting the feature
vector. Subtract if y* is -1.

w=w+y* - f
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Multiclass Decision Rule

= |f we have multiple classes:

= A weight vector for each class:

Wy

= Score (activation) of a class y:

Wy

- f(x)

= Prediction highest score wins

y = argmax wy - f(z)
Yy
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Binary = multiclass where the negative class has weight zero

Example: Multiclass Perceptron

Learning: Multiclass Perceptron

“win the vote”

“win the election”

“win the game”
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Start with all weights =0
Pick up training examples one by one
Predict with current weights

y =argmaxy wy - f(z)

If correct, no change!

If wrong: lower score of wrong answer,
raise score of right answer

wy = wy — f(x)

Properties of Perceptrons

Separability: true if some parameters get the training set
perfectly correct

Convergence: if the training is separable, perceptron will
eventually converge (binary case)

Mistake Bound: the maximum number of mistakes (binary
case) related to the margin or degree of separability
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Problems with the Perceptron

Improving the Perceptron

Noise: if the data isn’t separable, .. * .
weights might thrash - = - =
= Averaging weight vectors over time - ‘_/ * [> - AN

can help (averaged perceptron)
- * ol
Mediocre generalization: finds a - -
“barely” separating solution - .

Overtraining: test / held-out
accuracy usually rises, then falls
= Overtraining is a kind of overfitting
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Non-Separable Case: Deterministic Decision

Non-Separable Case: Probabilistic Decision
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Even the best linear boundary makes at least one mistake
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How to get probabilistic decisions? Best w?

* Perceptron scoring: z = w - f(x) = Maximum likelihood estimation:
" If z=w-f(x) verypositive > want probability going to 1 _ _
= If = ery negative > want probability going to 0 max ll(w) = max ZlogP(y(”|x(”;w)
z=w- f(z) Vverynegativ want p ility going " " .
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= Logistic Regression

Separable Case: Deterministic Decision — Many Options Separable Case: Probabilistic Decision — Clear Preference
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Multiclass Logistic Regression Best w?

wy - f biggest
® Recall Perceptron: wy * Maximum likelihood estimation:
= A weight vector for each class: wy
= Score (activation) of a class y: Wy - f(:lj) b w3 max ll(w) = max E log P(’y(z) |x(1)7 'LU)
= Prediction highest score wins  y = arg max wy - f(x) w3 - f v v 7
y w2 f biggest
biggest
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= How to make the scores into probabilities? . i 1). —
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original activations softmax activations = Multi-Class Logistic Regression

Next Lecture

= Optimization

= i.e., how do we solve:

w

max [l(w) = max ZlogP(y(i”x(i);w)



