Linear Classifiers CS 188: Artificial Intelligence Perceptrons and Logistic Regression Pieter Abbeel & Dan Klein University of California, Berkeley

Feature Vectors

Some (Simplified) Biology

al

Very loose inspiration: human neurons

Decision Rules

Binary Decision Rule

- In the space of feature vectors
 - Examples are points
 - Any weight vector is a hyperplane
 - One side corresponds to Y=+1
 - Other corresponds to Y=-1

Weight Updates

Learning: Binary Perceptron

- Start with weights = 0
- For each training instance:
 - Classify with current weights
 - If correct (i.e., y=y*), no change!

If wrong: adjust the weight vector

Learning: Binary Perceptron

- Start with weights = 0
- For each training instance:
 - Classify with current weights

$$y = \begin{cases} +1 & \text{if } w \cdot f(x) \geq 0 \\ -1 & \text{if } w \cdot f(x) < 0 \end{cases}$$

- If correct (i.e., y=y*), no change!
- If wrong: adjust the weight vector by adding or subtracting the feature vector. Subtract if y* is -1.

$$w = w + y^* \cdot f$$

Examples: Perceptron

Multiclass Decision Rule

- If we have multiple classes:
 - A weight vector for each class:

 w_y

• Score (activation) of a class y:

 $w_y \cdot f(x)$

Prediction highest score wins

$$y = \arg\max_{y} w_{y} \cdot f(x)$$

Binary = multiclass where the negative class has weight zero

Learning: Multiclass Perceptron

- Start with all weights = 0
- Pick up training examples one by one
- Predict with current weights

$$y = \arg \max_y w_y \cdot f(x)$$

- If correct, no change!
- If wrong: lower score of wrong answer, raise score of right answer

$$w_y = w_y - f(x)$$

$$w_{y^*} = w_{y^*} + f(x)$$

Example: Multiclass Perceptron

"win the vote"

"win the election"

"win the game"

w_{SPORTS}

BIAS	:	1
win	:	0
game	:	0
vote	:	0
the	:	0

$w_{POLITICS}$

BIAS : win : game :

vote : the :

0	
0	
0	
0	
0	

w_{TECH}

BIAS	:	0	
win	:	0	
game	:	0	
vote	:	0	
the	:	0	

Properties of Perceptrons

- Separability: true if some parameters get the training set perfectly correct
- Convergence: if the training is separable, perceptron will eventually converge (binary case)
- Mistake Bound: the maximum number of mistakes (binary case) related to the margin or degree of separability

$$\mathsf{mistakes} < \frac{k}{\delta^2}$$

Non-Separable

Non-Separable Case: Deterministic Decision

Non-Separable Case: Probabilistic Decision

How to get probabilistic decisions?

- Perceptron scoring: $z = w \cdot f(x)$
- $z = w \cdot f(x)$ very positive \rightarrow want probability going to 1 If
- $z = w \cdot f(x)$ very negative \rightarrow want probability going to 0 • If
- Sigmoid function

Maximum likelihood estimation:

$$\begin{split} \max_{w} & ll(w) = \max_{w} \quad \sum_{i} \log P(y^{(i)} | x^{(i)}; w) \\ \text{with:} & P(y^{(i)} = +1 | x^{(i)}; w) = \frac{1}{1 + e^{-w \cdot f(x^{(i)})}} \\ & P(y^{(i)} = -1 | x^{(i)}; w) = 1 - \frac{1}{1 + e^{-w \cdot f(x^{(i)})}} \end{split}$$

= Logistic Regression

Separable Case: Deterministic Decision – Many Options

Separable Case: Probabilistic Decision – Clear Preference

Multiclass Logistic Regression

Best w?

Maximum likelihood estimation:

$$\max_{w} ll(w) = \max_{w} \sum_{i} \log P(y^{(i)}|x^{(i)};w)$$

with:
$$P(y^{(i)}|x^{(i)};w) = rac{e^{w_{y^{(i)}} \cdot f(x^{(i)})}}{\sum_{y} e^{w_{y} \cdot f(x^{(i)})}}$$

= Multi-Class Logistic Regression

Next Lecture

- Optimization
 - i.e., how do we solve:

$$\max_{w} \quad ll(w) = \max_{w} \quad \sum_{i} \log P(y^{(i)}|x^{(i)};w)$$