CS 188: Artificial Intelligence

Perceptrons and Logistic Regression

Pieter Abbeel & Dan Klein University of California, Berkeley

Linear Classifiers

Feature Vectors

Some (Simplified) Biology

• Very loose inspiration: human neurons

Linear Classifiers

- Inputs are feature values
- Each feature has a weight
- Sum is the activation

$$activation_w(x) = \sum_i w_i \cdot f_i(x) = w \cdot f(x)$$

- If the activation is:
 - Positive, output +1
 - Negative, output -1

Weights

- Binary case: compare features to a weight vector
- Learning: figure out the weight vector from examples

Decision Rules

Binary Decision Rule

 $f \cdot w = 0$

Weight Updates

Learning: Binary Perceptron

- Start with weights = 0
- For each training instance:
 - Classify with current weights

- If correct (i.e., y=y*), no change!
- If wrong: adjust the weight vector

Learning: Binary Perceptron

- Start with weights = 0
- For each training instance: Classify with current weights

$$y = \begin{cases} +1 & \text{if } w \cdot f(x) \geq 0 \\ -1 & \text{if } w \cdot f(x) < 0 \end{cases}$$

- If correct (i.e., y=y*), no change!
- If wrong: adjust the weight vector by adding or subtracting the feature vector. Subtract if y* is -1.

Examples: Perceptron

- If we have multiple classes:
 - A weight vector for each class:

 w_y

• Score (activation) of a class y:

$$w_y \cdot f(x)$$

Prediction highest score wins

$$y = \underset{y}{\operatorname{arg\,max}} \ w_y \cdot f(x)$$

Binary = multiclass where the negative class has weight zero

- Start with all weights = 0
- Pick up training examples one by one
- Predict with current weights

$$y = \arg \max_{y} w_{y} \cdot f(x)$$

- If correct, no change!
- If wrong: lower score of wrong answer, raise score of right answer

$$w_y = w_y - f(x)$$

$$w_{y^*} = w_{y^*} + f(x)$$

Example: Multiclass Perceptron

"win the vote"

"win the election"

"win the game"

w_{SPORTS}

BIAS	:	1	
win	:	0	
game	:	0	
vote	:	0	
the	:	0	

$w_{POLITICS}$

BIAS	:	0	
win	:	0	
game	:	0	
vote	:	0	
the	:	0	

w_{TECH}

BIAS	:	0
win	:	0
game	:	0
vote	:	0
the	:	0

Properties of Perceptrons

- Separability: true if some parameters get the training set perfectly correct
- Convergence: if the training is separable, perceptron will eventually converge (binary case)
- Mistake Bound: the maximum number of mistakes (binary case) related to the margin or degree of separability

$$\mathsf{mistakes} < \frac{k}{\delta^2}$$

Problems with the Perceptron

- Noise: if the data isn't separable, weights might thrash
 - Averaging weight vectors over time can help (averaged perceptron)
- Mediocre generalization: finds a "barely" separating solution
- Overtraining: test / held-out accuracy usually rises, then falls
 Overtraining is a kind of overfitting

Improving the Perceptron

Non-Separable Case: Deterministic Decision

Non-Separable Case: Probabilistic Decision

How to get probabilistic decisions?

• Perceptron scoring: $z = w \cdot f(x)$

- If $z = w \cdot f(x)$ very positive \rightarrow want probability going to 1
- If $z = w \cdot f(x)$ very negative \rightarrow want probability going to 0
- Sigmoid function

$$\phi(z) = \frac{1}{1 + e^{-z}}$$

Best w?

Maximum likelihood estimation:

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)};w)$$

with:

$$P(y^{(i)} = +1|x^{(i)}; w) = \frac{1}{1 + e^{-w \cdot f(x^{(i)})}}$$

$$P(y^{(i)} = -1|x^{(i)}; w) = 1 - \frac{1}{1 + e^{-w \cdot f(x^{(i)})}}$$

= Logistic Regression

Separable Case: Deterministic Decision - Many Options

Separable Case: Probabilistic Decision – Clear Preference

Multiclass Logistic Regression

Best w?

Recall Perceptron:

ullet A weight vector for each class: w_{ullet}

• Score (activation) of a class y: $w_y \cdot f(z)$

 $\quad \text{Prediction highest score wins} \quad y = \arg\max_{y} \ w_y \cdot f(x)$

How to make the scores into probabilities?

$$\underbrace{z_{1}, z_{2}, z_{3}}_{\text{original activations}} \to \underbrace{\frac{e^{z_{1}}}{e^{z_{1}} + e^{z_{2}} + e^{z_{3}}}, \frac{e^{z_{2}}}{e^{z_{1}} + e^{z_{2}} + e^{z_{3}}}, \frac{e^{z_{3}}}{e^{z_{1}} + e^{z_{2}} + e^{z_{3}}}}_{\text{softmax activations}}$$

Next Lecture

Optimization

■ i.e., how do we solve:

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)}; w)$$

Maximum likelihood estimation:

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)};w)$$

with:
$$P(y^{(i)}|x^{(i)};w) = \frac{e^{w_{y^{(i)}} \cdot f(x^{(i)})}}{\sum_{y} e^{w_{y} \cdot f(x^{(i)})}}$$

= Multi-Class Logistic Regression