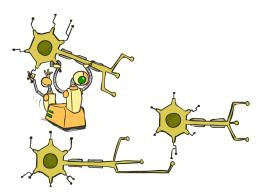
CS 188: Artificial Intelligence

Optimization and Neural Nets

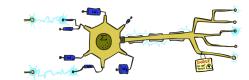


Instructors: Pieter Abbeel and Dan Klein --- University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

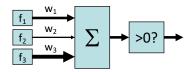
Reminder: Linear Classifiers

- Inputs are feature values
- Each feature has a weight
- Sum is the activation



$$activation_w(x) = \sum_i w_i \cdot f_i(x) = w \cdot f(x)$$

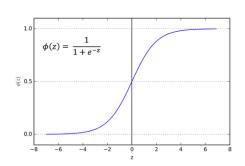
- If the activation is:
 - Positive, output +1
 - Negative, output -1



How to get probabilistic decisions?

- Activation: $z = w \cdot f(x)$
- If $z = w \cdot f(x)$ very positive \rightarrow want probability going to 1
- If $z = w \cdot f(x)$ very negative \rightarrow want probability going to 0
- Sigmoid function

$$\phi(z) = \frac{1}{1 + e^{-z}}$$



Best w?

Maximum likelihood estimation:

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)};w)$$
 with:
$$P(y^{(i)} = +1|x^{(i)};w) = \frac{1}{1+e^{-w\cdot f(x^{(i)})}}$$

$$P(y^{(i)} = -1|x^{(i)};w) = 1 - \frac{1}{1+e^{-w\cdot f(x^{(i)})}}$$

= Logistic Regression

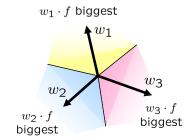
Multiclass Logistic Regression

Multi-class linear classification

ullet A weight vector for each class: w_u

• Score (activation) of a class y: $w_{\mathcal{U}} \cdot f(x)$

 $\begin{tabular}{ll} {\bf Prediction \ w/highest \ score \ wins:} & y = \underset{y}{\arg\max} \ w_y \cdot f(x) \\ \end{tabular}$



How to make the scores into probabilities?

$$z_1,z_2,z_3 \rightarrow \underbrace{\frac{e^{z_1}}{e^{z_1}+e^{z_2}+e^{z_3}},\frac{e^{z_2}}{e^{z_1}+e^{z_2}+e^{z_3}},\frac{e^{z_3}}{e^{z_1}+e^{z_2}+e^{z_3}}}_{\text{original activations}},\underbrace{\frac{e^{z_2}}{e^{z_1}+e^{z_2}+e^{z_3}},\frac{e^{z_3}}{e^{z_1}+e^{z_2}+e^{z_3}}}_{\text{softmax activations}}$$

Best w?

Maximum likelihood estimation:

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)};w)$$

with:
$$P(y^{(i)}|x^{(i)};w) = \frac{e^{w_{y^{(i)}} \cdot f(x^{(i)})}}{\sum_{y} e^{w_{y} \cdot f(x^{(i)})}}$$

= Multi-Class Logistic Regression

This Lecture

- Optimization
 - i.e., how do we solve:

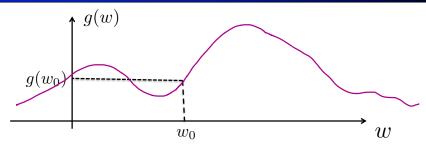
$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)}; w)$$

Hill Climbing

- Recall from CSPs lecture: simple, general idea
 - Start wherever
 - Repeat: move to the best neighboring state
 - If no neighbors better than current, quit

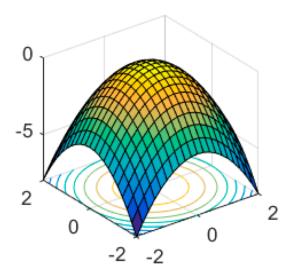
- What's particularly tricky when hill-climbing for multiclass logistic regression?
 - Optimization over a continuous space
 - Infinitely many neighbors!
 - How to do this efficiently?

1-D Optimization



- ullet Could evaluate $g(w_0+h)$ and $g(w_0-h)$
 - Then step in best direction
- lacktriangledown Or, evaluate derivative: $\dfrac{\partial g(w_0)}{\partial w} = \lim_{h o 0} \dfrac{g(w_0+h) g(w_0-h)}{2h}$
 - Tells which direction to step into

2-D Optimization



Source: offconvex.org

Gradient Ascent

- Perform update in uphill direction for each coordinate
- The steeper the slope (i.e. the higher the derivative) the bigger the step for that coordinate
- E.g., consider: $g(w_1, w_2)$
 - Updates:

$$w_1 \leftarrow w_1 + \alpha * \frac{\partial g}{\partial w_1}(w_1, w_2)$$

$$w_2 \leftarrow w_2 + \alpha * \frac{\partial g}{\partial w_2}(w_1, w_2) \qquad \qquad \text{with: } \nabla_w g(w) = \begin{bmatrix} \frac{\partial g}{\partial w_1}(w) \\ \frac{\partial g}{\partial w_2}(w) \end{bmatrix}$$

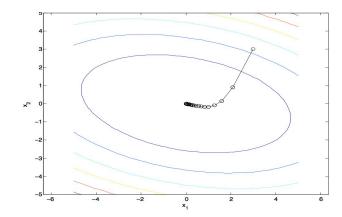
Updates in vector notation:

$$w \leftarrow w + \alpha * \nabla_w g(w)$$

with:
$$\nabla_w g(w) = \begin{bmatrix} \frac{\partial g}{\partial w_1}(w) \\ \frac{\partial g}{\partial w_2}(w) \end{bmatrix}$$
 = gradient

Gradient Ascent

- Idea:
 - Start somewhere
 - Repeat: Take a step in the gradient direction



What is the Steepest Direction?

$$\max_{\Delta:\Delta_1^2 + \Delta_2^2 \le \varepsilon} g(w + \Delta)$$

$$g(w + \Delta) \approx g(w) + \frac{\partial g}{\partial w_1} \Delta_1 + \frac{\partial g}{\partial w_2} \Delta_2$$

$$\max_{\Delta:\Delta_1^2+\Delta_2^2\leq\varepsilon}\ g(w)+\frac{\partial g}{\partial w_1}\Delta_1+\frac{\partial g}{\partial w_2}\Delta_2$$

$$\max_{\Delta: \|\Delta\| \leq \varepsilon} \Delta^\top a \quad \boldsymbol{\rightarrow} \qquad \Delta = \varepsilon \frac{a}{\|a\|}$$

$$\Delta = \varepsilon \frac{a}{\|a\|}$$

$$\blacksquare \quad \text{Hence, solution:} \qquad \Delta = \varepsilon \frac{\nabla g}{\|\nabla g\|} \qquad \qquad \text{Gradient direction = steepest direction!}$$

$$\nabla g = \begin{bmatrix} \frac{\partial g}{\partial w_1} \\ \frac{\partial g}{\partial w_2} \end{bmatrix}$$

Gradient in n dimensions

$$\nabla g = \begin{bmatrix} \frac{\partial g}{\partial w_1} \\ \frac{\partial g}{\partial w_2} \\ \cdots \\ \frac{\partial g}{\partial w_n} \end{bmatrix}$$

Optimization Procedure: Gradient Ascent

```
• init w
• for iter = 1, 2, ... w \leftarrow w + \alpha * \nabla g(w)
```

- α : learning rate --- tweaking parameter that needs to be chosen carefully
- How? Try multiple choices
 - lacktriangle Crude rule of thumb: update changes w about 0.1 1 %

Batch Gradient Ascent on the Log Likelihood Objective

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)};w)$$

$$g(w)$$

```
• init w • for iter = 1, 2, ... w \leftarrow w + \alpha * \sum_i \nabla \log P(y^{(i)}|x^{(i)};w)
```

Stochastic Gradient Ascent on the Log Likelihood Objective

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)}; w)$$

Observation: once gradient on one training example has been computed, might as well incorporate before computing next one

• init w• for iter = 1, 2, ...
• pick random j $w \leftarrow w + \alpha * \nabla \log P(y^{(j)}|x^{(j)};w)$

Mini-Batch Gradient Ascent on the Log Likelihood Objective

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)}; w)$$

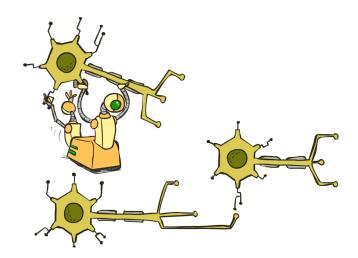
Observation: gradient over small set of training examples (=mini-batch) can be computed in parallel, might as well do that instead of a single one

• init w • for iter = 1, 2, ... • pick random subset of training examples J $w \leftarrow w + \alpha * \sum_{j \in J} \nabla \log P(y^{(j)}|x^{(j)};w)$

How about computing all the derivatives?

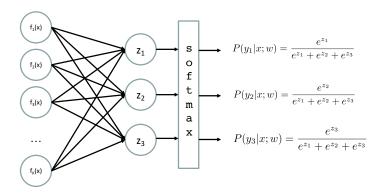
 We'll talk about that once we covered neural networks, which are a generalization of logistic regression

Neural Networks

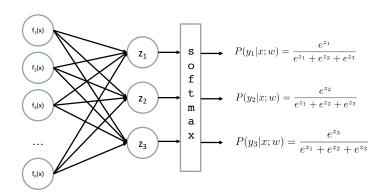


Multi-class Logistic Regression

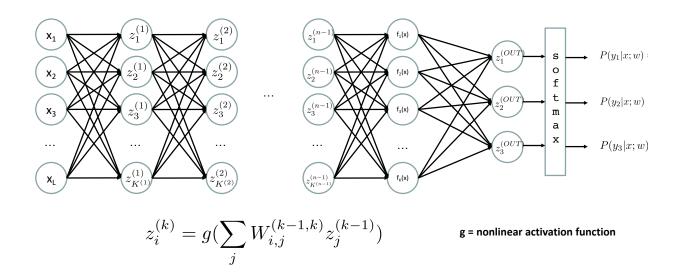
= special case of neural network



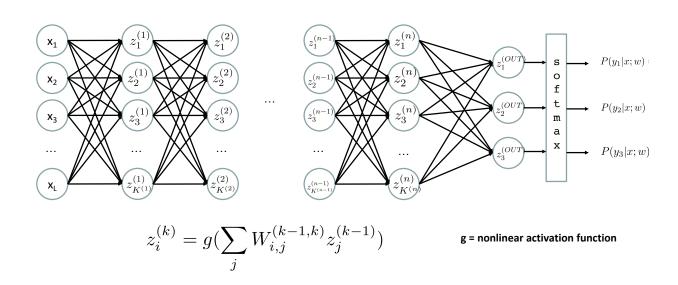
Deep Neural Network = Also learn the features!



Deep Neural Network = Also learn the features!

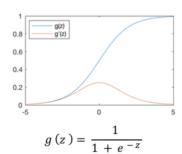


Deep Neural Network = Also learn the features!



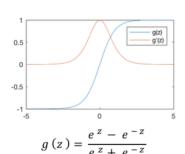
Common Activation Functions

Sigmoid Function



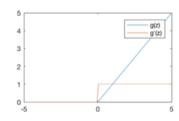
$$g'(z) = g(z)(1 - g(z))$$

Hyperbolic Tangent



$$g'(z) = 1 - g(z)^2$$

Rectified Linear Unit (ReLU)



$$g(z) = \max(0, z)$$

$$g'(z) = \begin{cases} 1, & z > 0 \\ 0, & \text{otherwise} \end{cases}$$

[source: MIT 6.S191 introtodeeplearning.com]

Deep Neural Network: Also Learn the Features!

Training the deep neural network is just like logistic regression:

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)}; w)$$

just w tends to be a much, much larger vector ©

- →just run gradient ascent
- + stop when log likelihood of hold-out data starts to decrease

Neural Networks Properties

- Theorem (Universal Function Approximators). A two-layer neural network with a sufficient number of neurons can approximate any continuous function to any desired accuracy.
- Practical considerations
 - Can be seen as learning the features
 - Large number of neurons
 - Danger for overfitting
 - (hence early stopping!)

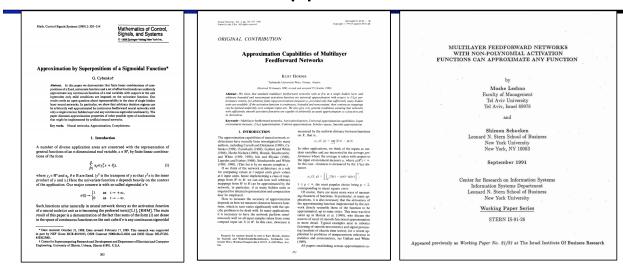
Universal Function Approximation Theorem*

Hornik theorem 1: Whenever the activation function is bounded and nonconstant, then, for any finite measure μ , standard multilayer feedforward networks can approximate any function in $L^p(\mu)$ (the space of all functions on R^k such that $\int_{R^k} |f(x)|^p d\mu(x) < \infty$) arbitrarily well, provided that sufficiently many hidden units are available.

Hornik theorem 2: Whenever the activation function is continuous, bounded and non-constant, then, for arbitrary compact subsets $X \subseteq R^k$, standard multilayer feedforward networks can approximate any continuous function on X arbitrarily well with respect to uniform distance, provided that sufficiently many hidden units are available.

In words: Given any continuous function f(x), if a 2-layer neural network has enough hidden units, then there is a choice of weights that allow it to closely approximate f(x).

Universal Function Approximation Theorem*



Cybenko (1989) "Approximations by superpositions of sigmoidal functions"

Hornik (1991) "Approximation Capabilities of Multilayer Feedforward Networks"

Leshno and Schocken (1991) "Multilayer Feedforward Networks with Non-Polynomial Activation
Functions Can Approximate Any Function"

Fun Neural Net Demo Site

- Demo-site:
 - http://playground.tensorflow.org/

How about computing all the derivatives?

Derivatives tables:

$$\begin{aligned} \frac{d}{dx}(a) &= 0 & \frac{d}{dx}[\ln u] = \frac{d}{dx}[\log_{\sigma}u] = \frac{1}{u}\frac{du}{dx} \\ \frac{d}{dx}(x) &= 1 & \frac{d}{dx}[\log_{\sigma}u] = \log_{\sigma}e^{\frac{1}{u}\frac{du}{dx}} \\ \frac{d}{dx}(au) &= a\frac{du}{dx} & \frac{d}{dx}e^{u} = e^{u}\frac{du}{dx} \\ \frac{d}{dx}(u+v-w) &= \frac{du}{dx} + \frac{dv}{dx} & \frac{d}{dx}a^{u} = a^{u}\ln a\frac{du}{dx} \\ \frac{d}{dx}(uv) &= u\frac{dv}{dx} + v\frac{dv}{dx} & \frac{d}{dx}(u^{v}) = vu^{v-1}\frac{du}{dx} + \ln u \ u^{v}\frac{dv}{dx} \\ \frac{d}{dx}(u^{u}) &= \frac{1}{v}\frac{du}{dx} & \frac{d}{dx}\sin u = \cos u\frac{du}{dx} \\ \frac{d}{dx}(u^{u}) &= nu^{n-1}\frac{du}{dx} & \frac{d}{dx}\cos u = -\sin u\frac{du}{dx} \\ \frac{d}{dx}(\sqrt{u}) &= \frac{1}{2\sqrt{u}}\frac{du}{dx} & \frac{d}{dx}\cot u = -\csc^{2}u\frac{du}{dx} \\ \frac{d}{dx}\left(\frac{1}{u^{u}}\right) &= -\frac{n}{u}\frac{du}{dx} & \frac{d}{dx}\sec u = \sec u\tan u\frac{du}{dx} \\ \frac{d}{dx}\left(\frac{1}{u^{u}}\right) &= -\frac{n}{u}\frac{du}{dx} & \frac{d}{dx}\sec u = -\csc u\cot u\frac{du}{dx} \\ \frac{d}{dx}\left(\frac{1}{f}(u)\right] & \frac{d}{dx} & \frac{d}{dx}\csc u = -\csc u\cot u\frac{du}{dx} \end{aligned}$$

[source: http://hyperphysics.phy-astr.gsu.edu/hbase/Math/derfunc.htm

How about computing all the derivatives?

- But neural net f is never one of those?
 - No problem: CHAIN RULE:

$$f(x) = g(h(x))$$

Then
$$f'(x) = g'(h(x))h'(x)$$

→ Derivatives can be computed by following well-defined procedures

Automatic Differentiation

- Automatic differentiation software
 - e.g. Theano, TensorFlow, PyTorch, Chainer
 - Only need to program the function g(x,y,w)
 - Can automatically compute all derivatives w.r.t. all entries in w
 - This is typically done by caching info during forward computation pass of f, and then doing a backward pass = "backpropagation"
 - Autodiff / Backpropagation can often be done at computational cost comparable to the forward pass
- Need to know this exists
- How this is done? -- outside of scope of CS188

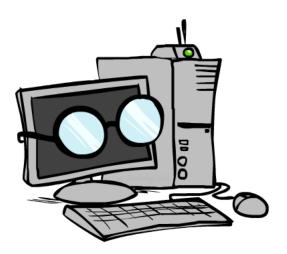
Summary of Key Ideas

- Optimize probability of label given input
- $\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)}; w)$

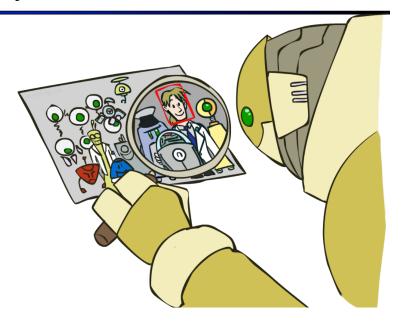
- Continuous optimization
 - Gradient ascent:
 - Compute steepest uphill direction = gradient (= just vector of partial derivatives)
 - Take step in the gradient direction
 - Repeat (until held-out data accuracy starts to drop = "early stopping")
- Deep neural nets
 - Last layer = still logistic regression
 - Now also many more layers before this last layer
 - = computing the features
 - → the features are learned rather than hand-designed
 - Universal function approximation theorem
 - If neural net is large enough
 - Then neural net can represent any continuous mapping from input to output with arbitrary accuracy
 - But remember: need to avoid overfitting / memorizing the training data → early stopping!
 - Automatic differentiation gives the derivatives efficiently (how? = outside of scope of 188)

How well does it work?

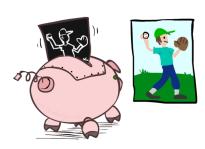
Computer Vision



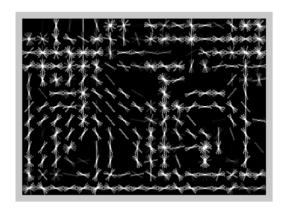
Object Detection



Manual Feature Design



Features and Generalization



[HoG: Dalal and Triggs, 2005]

Features and Generalization

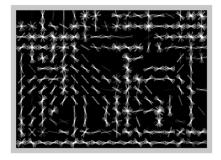
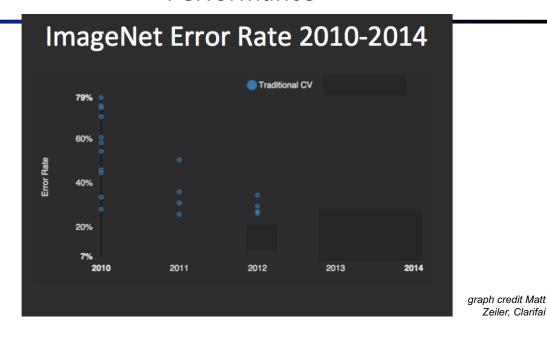
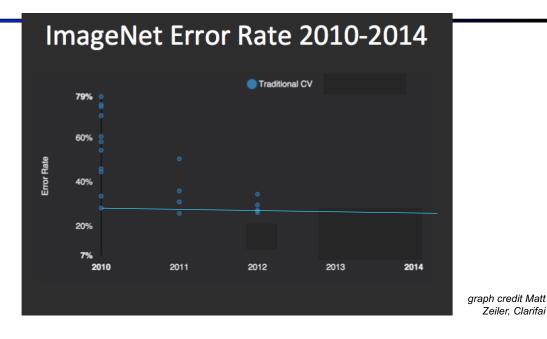


Image HoG

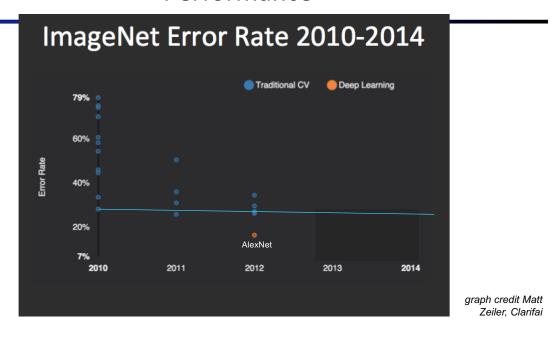
Performance



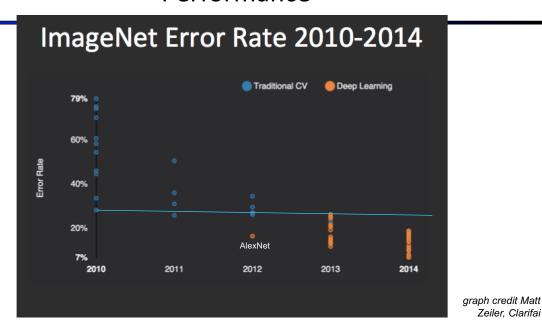
Performance



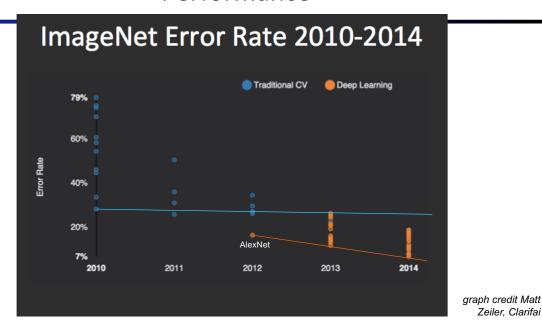
Performance



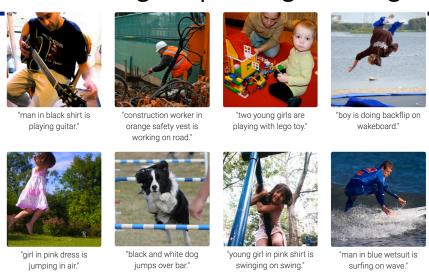
Performance



Performance



MS COCO Image Captioning Challenge

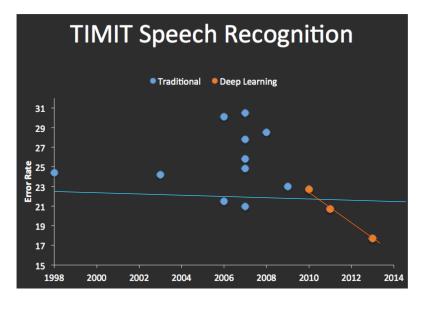


Karpathy & Fei-Fei, 2015; Donahue et al., 2015; Xu et al, 2015; many more

Visual QA Challenge

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C. Lawrence Zitnick, Devi Parikh

Speech Recognition





graph credit Matt Zeiler, Clarifai

Machine Translation

power

<end>

is

Knowledge

Next: More Neural Net Applications!