CS 188: Artificial Intelligence

Optimization and Neural Nets

Instructors: Pieter Abbeel and Dan Klein --- University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Reminder: Linear Classifiers

Inputs are feature values
Each feature has a weight
Sum is the activation

activationy(z) = > w; - fi(z) = w - f(z)

If the activation is:

£
* Positive, output +1 W 3 = >0? =
= Negative, output -1 %,]

How to get probabilistic decisions?

Activation: 2z =w - f(x)

If z=w-f(z) verypositive 2> want probability going to 1
If z=w-f(x) verynegative 2 want probability goingto 0

Sigmoid function X
¢(Z)=ﬁ
1 f ﬁ
Z — 5 05F

Best w?

= Maximum likelihood estimation:

max [l(w) = max ZlogP(y(i)\x(i);w)

. : 1
| () — 1)) —
with: P(y +1|$ 7w) 1+ p—w-f(z(®)

| Z. 1

= Logistic Regression

Multiclass Logistic Regression

= Multi-class linear classification wi - f biggest
w1
= A weight vector for each class: U)y
= Score (activation) of a class y: Wy - f(ag) w3
w2
= Prediction w/highest score wins: y = arg max wy - f(z) wo - f w3 - f
Y 2 biggest
biggest
= How to make the scores into probabilities?
z z z
et e~? e~s

Z1,22,23 —) 3

e~1 _|_ er2 _|_ er3 e*l _|_ er2 _|_ e~r3 e*1 _|_ e~2 _|_ e~3

\) L)
1 Y

original activations softmax activations

Best w?

= Maximum likelihood estimation:

w

max [l(w) = max ZlogP(y(i)\a:(i);w)

(4)] ,.(2) Gwy(i)'f(x(i))
with: P(y ’.CC ,’LU) — Zy 81L;y-J"1(:1:(1’))

= Multi-Class Logistic Regression

This Lecture

= Optimization

= j.e., how do we solve:

max [l(w) = max ZlogP(y(i)\a:(i);w)

w

Hill Climbing

= Recall from CSPs lecture: simple, general idea
= Start wherever
= Repeat: move to the best neighboring state
* If no neighbors better than current, quit

S

— -

= What’s particularly tricky when hill-climbing for multiclass
logistic regression?
* Optimization over a continuous space

* Infinitely many neighbors!

* How to do this efficiently?

1-D Optimization

g(w NG

= Could evaluate g(wo +h) and g(wo — h)
» Then step in best direction
dg(wo)

o . glwo +h) —glwo — h
= Or, evaluate derivative: o am o)2h o =)

= Tells which direction to step into

2-D Optimization

Source: offconvex.org

Gradient Ascent

= Perform update in uphill direction for each coordinate

= The steeper the slope (i.e. the higher the derivative) the bigger the step
for that coordinate

* E.g., consider: g(wy,ws)

= Updates: = Updates in vector notation:
g
Wy <= Wi + Qk 8—w1(w1’w2) W 4— w~+ a*x Vyg(w)
dg 99
Wo < Wa + Qv * 8’(1_)2 (wla w2) with: Vyg(w) = [Z{%l EZ;] = gradient

Gradient Ascent

= |dea:
= Start somewhere
= Repeat: Take a step in the gradient direction

Figure source: Mathworks

What is the Steepest Direction?

max w+ A
A:A2+AZ<e 9l) L

First-Order Taylor Expansion:

Steepest Descent Direction:

.
. max A'a
Recall: AATSe >
. \Y
Hence, solution: A=e 29
IVall

S

- 9g 9g
gw+A) = g(w) + TUHAI + aingz

dg dg
‘ + A+ A
naiX, 90 g SRt A

el

Gradient direction = steepest direction!

Gradient in n dimensions

9g
owq

ng

Optimization Procedure: Gradient Ascent

" init
= for iter = 1, 2, ..

w < w+ a*x Vg(w)

= «: learning rate --- tweaking parameter that needs to be
chosen carefully

= How? Try multiple choices
= Crude rule of thumb: update changes w about0.1-1%

Batch Gradient Ascent on the Log Likelihood Objective

w

max [l(w) = max ZlogP(y(i)m(i);w)

\ J

g(w)

= init W

= for iter =1, 2, ..

W W+ ax ZVIogP(y(i”x(i);w)

Stochastic Gradient Ascent on the Log Likelihood Objective

w

max [l(w) = max ZlogP(y(i)m(i);w)

Observation: once gradient on one training example has been
computed, might as well incorporate before computing next one

= init w
» for iter = 1, 2,

= pick random j

w <+ w + ax Vlog P(yW |z w)

Mini-Batch Gradient Ascent on the Log Likelihood Objective

w

max [l(w) = max ZlogP(y(i)m(i);w)

Observation: gradient over small set of training examples (=mini-batch)
can be computed in parallel, might as well do that instead of a single one

= init w
» for iter = 1, 2,
" pick random subset of training examples J
W 4w+ ax ZVlogP(y(j)|x(j);w)
JjeJ

How about computing all the derivatives?

= We'll talk about that once we covered neural networks, which
are a generalization of logistic regression

Neural Networks

Multi-class Logistic Regression

= = special case of neural network

filx)
et
n = 8 Pl = o
() o
£
t e
z, — P(yp|r;w) = ——F——
f3(x) 2 m (v2]) e*1 + e*2 4 e*3
a
x e*s
3 — — Pplrw)=—F—pr
e*1 4 e*2 + e*3
fi(x)

Deep Neural Network = Also learn the features!

filx)
et
n = 8 Pl = o
() o
£
t e
z, — P(yp|r;w) = ——mF——
f4(x) 2 m (22|) e*l + e*2 + e*s
a
x e*s

n 7 T Pslne) = o

fi(x)

Deep Neural Network = Also learn the features!

X1

X3

X3

XL

zgl) z%z)
Zél) ZéZ)
zél) Z§2)
1 2
Zl(m)l) Zi(()n
(k)
< = 9(§
J

nyl) £
AV s — Plnlnw)
L(n=1)) o
2 £
(n—1) ; 2OV — tL L Plplsw)
23 3(x) m
a

o XL P(gsfriu)

0o

(k=1.k) (k=1)

2V

zZ.) g = nonlinear activation function

J

Deep Neural Network = Also learn the features!

X1

X3

X3

XL

zgl) z%z)
Zél) ZéZ)
zél) Z§2)
1 2
Zl(m)l) Zi(()n
(k) _ E :
< = 9(

2V

(k=1k) (k=1))

n—1 (n)
A" 21
AV — 5 —s P(yilmiw)
Zl(n,f 1) Zén) (o]
2 £
(n—1) (n) zéOUT)_’ . P(y2|z;w)
23 23 m
a
SOV F s P(ys|zw)
. (n)
:;\’(u”n ZK(H)

g = nonlinear activation function

J

Common Activation Functions

Sigmoid Function Hyperbolic Tangent Rectified Linear Unit (ReLU)
1 1 -
92) 92) o)
0.8 9'@) 05 @) 4 o'
0.6 3
0
0.4 2
0.2 oS 1 1
0 1 — 0 =
0 5 5 0 5 5 0 5
1 e — e %
g(Z)=1+e_z Q(Z)=m g(z) = max (0, z)
1 z>0
! - — ’ — _ 2 ' — ’
9' @)= g(2)(1-g(2) 9'(z)=1-9(2) 9'(2) [o, otherwise

[source: MIT 6.5191 introtodeeplearning.com]

Deep Neural Network: Also Learn the Features!

* Training the deep neural network is just like logistic regression:

w

max [l(w) = max ZlogP(y(i)\x(i);w)

just w tends to be a much, much larger vector ©

—>just run gradient ascent
+ stop when log likelihood of hold-out data starts to decrease

Neural Networks Properties

= Theorem (Universal Function Approximators). A two-layer neural
network with a sufficient number of neurons can approximate
any continuous function to any desired accuracy.

= Practical considerations
= Can be seen as learning the features

= Large number of neurons
= Danger for overfitting
= (hence early stopping!)

Universal Function Approximation Theorem*

Hornik theorem 1: Whenever the activation function is bounded and nonconstant, then,
for any finite measure g, standard multilayer feedforward networks can approximate any
function in LP(yt) (the space of all functions on R* such that [p« |f(z)[Pdp(z) < oo) arbi-

trarily well, provided that sufficiently many hidden units are available.

Hornik theorem 2: Whenever the activation function is continuous, bounded and non-
constant, then, for arbitrary compact subsets X C R, standard multilayer feedforward

networks can approximate any continuous function on X arbitrarily well with respect to

uniform distance, provided that sufficiently many hidden units are available.

= |n words: Given any continuous function f(x), if a 2-layer neural
network has enough hidden units, then there is a choice of
weights that allow it to closely approximate f(x).

Cybenko (1989) “Approximations by superpositions of sigmoidal functions”

Hornik (1991) “Approximation Capabilities of Multilayer Feedforward Networks”

Leshno and Schocken (1991) “Multilayer Feedforward Networks with Non-Polynomial Activation
Functions Can Approximate Any Function”

Universal Function Approximation Theorem*

Mathematics of Control,
Signals, and Systems

© 1989 Sprngue Vg o Yo

Approximation by Superpositions of a Sigmoidal Function®
G, Cybenkot

Abtract 1 b paper we demonsrae ha i inea combinations of om-

Bypercube only mild condiions ae imposed o the uivariae funcion. Our

e implrmcated by riicilneval sewerks.
Key worts. Neursl networks, Approsimaton, Completenes.

1. Tnteoduction

A number of diverse application areas are concerned with the representation of
R,

tions of the form
PR o
where y,€ R"and o, 0 € R are fxed,(y s the transpose ofyso thatyTx s the inner

product of y and x) Here the univariate function o depends heavily on the context
of the application. Our major concern is with so-called sigmoidal o's

1w it
w-f LI
[theory as the
1), (RHM], The main
~ Dae recived: Otohr 21, 198, Dt rvid: ebruary 17, 985, T rescarch was s

research was supporied
n par by NSF Grant DCR-4619101, ONR Contract NOOO.86.G-0202 snd DOE Graat DE.FGA2-

SSER2S00

Enginering, Univerty o o, Urban,Tincs 1801, USA.

o

ORIGINAL CONTRIBUTION

A —— ilities of
Feedforward Networks
KUt Horwik
bt We s het sandard oy

o be e ey gevre condions cowing e oo

i ety

Kepwonds—Moliayreetiorward setworks. Activationunction, niversl pprosmationcapablies. Inpat
U oo spce.

The approximation capailies of newral network ar. " %+ M
chitctures have ecently been investgated by many Path-) = swplfe) - sten

e think of the nputs 5 an
e ineresid i the average per
erage i taken with respect 0

e o covionmen messre . whe A < 5.
I hi e closcnss i mesated byt L7 0
ptton = | [, - syt

1% p < =, the most popalar choie being p
corresponding 1o mean e crror
Of course. there are many more ways of measar

ing closencss of function. In paticulr. i many ap
plcation. i i o ecessary that the derivatives of
he e net.

work closely rese

of the function 0 be
This issue wi

1990). who
‘smooth functional approximation
Typical examples ars n robotics
ol oot enis) and signal process:

ancously well on allnpot sampies taken
compact input set X in R, In this case, choveness s

it and White

Al papers estabishing crtan approximation ca

MULTILAYER FEEDFORWARD NETWORKS
‘WITH NON-POLYNOMIAL ACTIVATION
FUNCTIONS CAN APPROXIMATE ANY FUNCTION

by
Moshe Leshno
Faculty of Management
Tel Aviv University
Tel Aviv, Israel 69978

and
Shimon Schocken
Leonard N. Stern School of Business

New York University
New York, NY 10003

September 1991

Center for Research on Information Systems
Information Systems Department
Leonard N. Stern School of Business
New York University
Working Paper Series

STERN 15-91-26

Appeared previously as Working Paper No. 21/91 at The Israel Institute Of Business Research

Cybenko (1989) “Approximations by superpositions of sigmoidal functions”
Hornik (1991) “Approximation Capabilities of Multilayer Feedforward Networks”
Leshno and Schocken (1991) “Multilayer Feedforward Networks with Non-Polynomial Activation

Functions Can Approximate Any Function”

Fun Neural Net Demo Site

= Demo-site:

= http://playground.tensorflow.org/

How about computing all the derivatives?

= Derivatives tables:

[source: http://hyperphysics.phy-astr.gsu.edu/hbase/Math/derfunc.html

4 @=0
dx
d

(x)=1
dx

d du
(au)=a
dx dx
d du dv dw
(u+v-w)= -
dx dx dx dx

d dv du
(uv)=u +v

dx dx dx

d (11)7 ldu _udv

dx\v) wvdx v dx

d ., -1 du
(u”)=nu

dx dx

d 1 du
(Nu)=

dx 2-/u dx

r/(l)__ 1 du
dx\u u? dx

(I(1)7_ n du
dx\u" u™" dx
d d du
(u)|= (u)
2l]= 2 17w)]

U dx

d d 1 du
[Inu]=-—[log,u]=
dx dx u dx
d [I] 1 1 du
og u|=log e
dxl "t S0 wdx
d , ,du
é=¢
dx dx
d du
a"=a"lna
dx dx
d 1 du dv
(") =wu’ +Inu o’
dx dx dx
d . du
sinu = cosu
Ix dx
d . du
cosu = —sinu
dx dx
d > du
tanu =sec” u
dx dx
d 2 du
cotu=—csc u
dx dx
d du
secu = secutanu
dx d

d du
CSCu = —cscucotu
dx

dx

How about computing all the derivatives?

But neural net f is never one of those?
= No problem: CHAIN RULE:

Then

-> Derivatives can be computed by following well-defined procedures

Automatic Differentiation

= Automatic differentiation software
= e.g. Theano, TensorFlow, PyTorch, Chainer

Only need to program the function g(x,y,w)

Can automatically compute all derivatives w.r.t. all entries in w

This is typically done by caching info during forward computation pass
of f, and then doing a backward pass = “backpropagation”

Autodiff / Backpropagation can often be done at computational cost
comparable to the forward pass

= Need to know this exists
= How this is done? -- outside of scope of C5188

Summary of Key Ideas

= Optimize probability of label given input ~ max li(w) =max 3 log P(y”|z";w)

= Continuous optimization

= Gradient ascent:
= Compute steepest uphill direction = gradient (= just vector of partial derivatives)
= Take step in the gradient direction
= Repeat (until held-out data accuracy starts to drop = “early stopping”)

= Deep neural nets
= Last layer = still logistic regression
= Now also many more layers before this last layer
= =computing the features
= - the features are learned rather than hand-designed
= Universal function approximation theorem
= If neural net is large enough

= Then neural net can represent any continuous mapping from input to output with arbitrary accuracy
= But remember: need to avoid overfitting / memorizing the training data = early stopping!

= Automatic differentiation gives the derivatives efficiently (how? = outside of scope of 188)

How well does it work?

Computer Vision

Object Detection

Manual Feature Design

Features and Generalization

e r R e =
L A s i Gt = S S (i §

*
-~
I
\
4
{
f
|
1
!

WE

PP R T e S S O

I

[HoG: Dalal and Triggs, 2005]

Features and Generalization

N
B
’
{
{
/
y

1
) 4
-
B
A
o~
¢
{
4
{

Image HoG

Performance

ImageNet Error Rate 2010-2014

Traditional CV

graph credit Matt
Zeiler, Clarifai

Performance

ImageNet Error Rate 2010-2014

Traditional CV

graph credit Matt
Zeiler, Clarifai

Performance

ImageNet Error Rate 2010-2014

Traditional CV @ Deep Leaming

2

AlexNet

2012

graph credit Matt
Zeiler, Clarifai

Performance

ImageNet Error Rate 2010-2014

Traditional CV @ Deep Leaming

AlexNet

2012

graph credit Matt
Zeiler, Clarifai

Performance

ImageNet Error Rate 2010-2014

Traditional CV @ Deep Leaming

AlexNet

2012

MS COCO Image Captioning Challeng

&

"man in black shirt is "construction worker in “two young girls are "boy is doing backflip on
playing guitar." orange safety vest is playing with lego toy." wakeboard."
working on road."

5.
L

"girl in pink dress is "black and white dog "young girl in pink shirt is "man in blue wetsuit is
jumping in air." jumps over bar." swinging on swing." surfing on wave."

Karpathy & Fei-Fei, 2015; Donahue et al., 2015; Xu et al, 2015; many more

graph credit Matt

Zeiler, Clarifai

Visual QA Challenge

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C. Lawrence Zitnick, Devi Parikh

What vegetable is on the
plate?

Neural Net:

Ground Truth: broccoli

What color are the shoes
on the person's feet ?
Neural Net:

Ground Truth: brown

How many school busses
are there?

Neural Net:

Ground Truth: 2

What sport is this?
Neural Net:
Ground Truth: baseball

What is on top of the
refrigerator?

Neural Net:
Ground Truth:

magnets
cereal

What uniform is she
wearing?

Neural Net: shorts
Ground Truth: girl scout

What is the table
number?

Neural Net: 4
Ground Truth:40

What are people sitting
under in the back?
Neural Net: bench
Ground Truth: tent

Speech Recognition

TIMIT Speech Recognition

Traditional

1998

2000 2002

2004

Deep Learning

2006 2008

2010

2012 2014

graph credit Matt Zeiler, Clarifai

Machine Translation

GOOBIE NeUral Viachine 1ransiation (m proauceion)

Encoder €0 [l @ [im===il @ |==——pi] Qg lE—)l @y |E—3il Qg |E=—il g

Decoder do TSR 4 di o b d A ds

Next: More Neural Net Applications!

