CS 188: Artificial Intelligence

Optimization and Neural Nets

Instructors: Pieter Abbeel and Dan Klein --- University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All C5188 materials are available at http://ai.berkeley.edu.]

How to get probabilistic decisions?

Reminder: Linear Classifiers

= |nputs are feature values
= Each feature has a weight
= Sum is the activation

activationy(z) = Y w; - fi(z) = w- f(x)

= [f the activation is:]
= Positive, output +1 Wa Z >0?

= Negative, output -1

Best w?

= Activation: z=w- f(z)
= If z=w-f(z) verypositive > want probability goingto 1
= If z=w-f(z) verynegative > want probability going to 0

= Sigmoid function o .
@)= o=
1) ﬁ
zZ)=———
9(2) 1+e* J

Multiclass Logistic Regression

= Maximum likelihood estimation:

max [l(w) = max Z]Og Ply D)z w)
i
. 1
T 14 e wiE®
1
14 e—w f(=®)

with: P(y(i) = +1|$(i)5w)
Py = ~1a;w) =1 -

= Logistic Regression

Best w?

= Multi-class linear classification wy - f biggest
w1
= A weight vector for each class: Wy
* Score (activation) of aclassy: wy, - f(z) w3
w2
= Prediction w/highest score wins: y = arg max Wy f(:E) - w3~ f
y w2 biggest
biggest
= How to make the scores into probabilities?
et e*? e
21522, 23 =7 z z 237 oz z 23’ oz z z:
e*l + e*2 +e#3 e*l +e*2 e efl 4+ e72 e
L) L J
T T
original activations softmax activations

= Maximum likelihood estimation:

max [l(w) = max Z]Og Ply D)z w)

w

oWy) F(@)

S D@y = —
with: — P(y'" |z w) >, e TE)

= Multi-Class Logistic Regression

This Lecture Hill Climbing

= Recall from CSPs lecture: simple, general idea W 7
= Start wherever .
= Repeat: move to the best neighboring state
= If no neighbors better than current, quit

= Optimization

= j.e., how do we solve:

max (w) = max Z log P(y(l) |33(Z) ;w) = What’s particularly tricky when hill-climbing for multiclass
i logistic regression?
* Optimization over a continuous space
* Infinitely many neighbors!
* How to do this efficiently?

1-D Optimization 2-D Optimization

= Could evaluate g(wo +h) and g(wy — h)

= Then step in best direction

X 3 Ag(w wo + h) — glwg — h
= Or, evaluate derivative: g(;wo) Z}Lgr}] 9(wo)th(Chall)
= Tells which direction to step into
Source: offconvex.org
Gradient Ascent Gradient Ascent
= |dea:
= Perform update in uphill direction for each coordinate = Start somewhere

= The steeper the slope (i.e. the higher the derivative) the bigger the step = Repeat: Take a step in the gradient direction

for that coordinate
= E.g., consider: g(wy,ws) A
4 e /
= Updates: = Updates in vector notation: | {'/ / .
69 o \ @ AN
wy — wy + a* 3—wl(w1’w2) W w+ ax Vyg(w)) \
,/
dg 99 o
Wy ¢ w2 + ok Bus (w1, w2) with: Vag(w) = [L(Zi] = gradient |
dwy

Figure source: Mathworks

What is the Steepest Direction? Gradient in n dimensions

B
—r
max g(w+A) g — 5
. I g9
A:af+Aj<e . P
99
= First-Order Taylor Expansion: glw+ A) = g(w) + ?—gAl + ?—gAz Vg = Ows
dwy wy .
g g dg
= Steepest Descent Direction: a9+ ou{] At ()M{JAZ dwn,
ax AT A=l
T Recall: iR 2 =l
* Hence, solution: A= sug—zu Gradient direction = steepest direction! Vg = [%}
Optimization Procedure: Gradient Ascent Batch Gradient Ascent on the Log Likelihood Objective
_ (1) (0).
P r— max l(w) max Z log P(y'"|z'"; w)
= for iter = 1, 2, .. L ‘ . J
w <+ w~+ a* Vg(w) g(w)
= init w
= «: learning rate --- tweaking parameter that needs to be = for iter = 1, 2, ..
chosen carefull N
_y . W w+ ak Z Vlog Py |z®; w)
= How? Try multiple choices -
= Crude rule of thumb: update changes w about0.1-1%
Stochastic Gradient Ascent on the Log Likelihood Objective Mini-Batch Gradient Ascent on the Log Likelihood Objective
max ll(w) = max Zlog P(y®)2®; w) max {l(w) = max Zlog P(y®)2®; w)
w w - w w -
3 3
Observation: once gradient on one training example has been Observation: gradient over small set of training examples (=mini-batch)
computed, might as well incorporate before computing next one can be computed in parallel, might as well do that instead of a single one
= init w = init w
= for iter = 1, 2, .. = for iter = 1, 2, ..
= pick random j = pick random subset of training examples J
w 4 w+ o x Vlog P(yP]z); w) ww+axy Vieg P(yP]a;w)
JjeJ

How about computing all the derivatives?

Neural Networks

= We'll talk about that once we covered neural networks, which

are a generalization of logistic regression

Multi-class Logistic Regression

Deep Neural Network = Also learn the features!

= = special case of neural network

0
7 > S — Plylziuw)=
falx) o
£
2 b L P(plaw) =
0 m
a
X G
— X Pysleiw) =
23 yslz;w) "
0

Deep Neural Network = Also learn the features!

0
7 > S — Plylziuw)=
falx) o
£
2 b L P(plaw) =
0 m
a
X Cad
— X Pysliw) =
23 yslz;w) A
0

Deep Neural Network = Also learn the features!

X1

X3

X3

X

AU s s P(ylziw)

A0V F s P(ys|z;w)

(1) (2) (n-1)

2 2 | ()

(1) .(2) _(n-1) 00 °

22 %2 < £

z},]) sz) +(n-1) ™ n
a
X

ey L(2)

210 Zp(2y i)

k k—1,k k—1
Zz() :g(zwi(‘j)Z]('))
J

Ty SN N)

g = nonlinear activation function

X1

X3

X3

X

(1) (2) (n-1) L (n)
z 2z 4" “1
AU s s P(ylziw)
(1) _(2) (n=1) _(n) °
2 2 20 2
2 2 2 £
t >
1 (2 . _(n) SOV E L P(ppfaiw)
D 2) d n
a
Ut X Ly P(yglaiw)
L) L(2) . L(n)
210 2K (), ZKines K

g = nonlinear activation function

k k—1,k k—1
Zz() :g(zwi(‘j)Z]('))
J

Common Activation Functions

Deep Neural Network: Also Learn the Features!

Sigmoid Function Hyperbolic Tangent
o - oz
08) .)
06
0
04
" 0s
0) —
s 0 5 5 [
1 e — e~ %
g@z)= 1T+e-2 g9(@2)= e+ e-2
9'@)= g(2)(1-g(2) 9'@)=1-9(2)?

[source: MIT 6.5191 introtodeeplearning.com]

Rectified Linear Unit (ReLU)

s

5 0 5
g(z)=max(0,z)

"(z2) = 1, z>0
9.(2) =19, otherwise

Neural Networks Properties

= Training the deep neural network is just like logistic regression:

w

max [l(w) = max Z log P(y]2 w)

just w tends to be a much, much larger vector ©

—just run gradient ascent
+ stop when log likelihood of hold-out data starts to decrease

Universal Function Approximation Theorem*

= Theorem (Universal Function Approximators). A two-layer neural
network with a sufficient number of neurons can approximate
any continuous function to any desired accuracy.

= Practical considerations
= Can be seen as learning the features
= Large number of neurons

= Danger for overfitting
= (hence early stopping!)

Universal Function Approximation Theorem*

Hornik theorem 1: Whenever the activation function is bounded and nonconstant, then,
for any finite measure , standard multilayer feedforward networks can approximate any
function in L?(u) (the space of all functions on R* such that [|f(z)Pdu(x) < co) arbi-

trarily well, provided that sufficiently many hidden units are available.

Hornik theorem 2: Whenever the activation function is continuous, bounded and non-
constant, then, for arbitrary compact subsets X C R, standard multilayer feedforward
networks can approximate any continuous function on X arbitrarily well with respect to

uniform distance, provided that sufficiently many hidden units are available.

= |n words: Given any continuous function f(x), if a 2-layer neural
network has enough hidden units, then there is a choice of
weights that allow it to closely approximate f(x).

Cybenko (1989) “Approximations by superpositions of sigmoidal functions”
Hornik (1981) apabilities of Multilaye

Leshno and Schocken (1991) “Multilayer Feedforward Networks with Non-Polynomial Activation
Functions Can Approximate Any Function”

Fun Neural Net Demo Site

Approximation Capabiltes of Mulilayer
orks

MULTILAYER FEEDFORWARD NETWORKS
‘WITH NON-POLYNOMIAL ACTIVATION
FUNCTIONS CAN APPROXIMATE ANY FUNCTION

Cybenko (1989) “Approximations by superpositions of sigmoidal functions”
Hornik (1981) apabilities of Multilaye

Leshno and Schocken (1991) “Multilayer Feedforward Networks with Non-Polynomial Activation
Functions Can Approximate Any Function”

= Demo-site:
= http://playground.tensorflow.org/

How about computing all the derivatives?

How about computing all the derivatives?

source:

= Derivatives tables:

4 (@=0
dx
d
=1
dx
du

() =a"
dx dx
d du, dv_dw
(v-wy=M A _
dx i dx
dv, du d du dv
wy=u® 4y Y=y i
dx a Ve) g
d (n] du_u dv d o du
alv) v TV i axt T g
d o d du
W'y=n cosu=—sinu
dr dx dx &
d | du d 2 du
)= tanu =sec’u
dx 2 dr dx d
.1(1]77|41u 4 o
dc\u) o’ dx dx
,/(1]:7 n du 9 gocu=secutanu
dr W dx e "‘/
d du
d d du < escu = —cscucotu
w]=L[rw)
/1=, L7l k

o d dv

Automatic Differentiation

But neural net f is never one of those?
= No problem: CHAIN RULE:

Then f'(@) = g'(h(x))h (x)

- Derivatives can be computed by following well-defined procedures

Summary of Key Ideas

= Automatic differentiation software

= e.g. Theano, TensorFlow, PyTorch, Chainer
= Only need to program the function g(x,y,w)
= Can automatically compute all derivatives w.r.t. all entries in w

= This is typically done by caching info during forward computation pass

of f, and then doing a backward pass = “backpropagation”

= Autodiff / Backpropagation can often be done at computational cost
comparable to the forward pass

= Need to know this exists

= How this is done? -- outside of scope of C5188

How well does it work?

= Optimize probability of label given input ~ max lI(w) =max Y log Py ;)

= Continuous optimization
= Gradient ascent:

= Compute steepest uphill direction = gradient (= just vector of partial derivatives)
= Take step in the gradient direction

= Repeat (until held-out data accuracy starts to drop = “early stopping”)

= Deep neural nets
= Last layer = still logistic regression
= Now also many more layers before this last layer
= = computing the features
= > the features are learned rather than hand-designed
= Universal function approximation theorem
= If neural netislarge enough

= Then neural net can represent any continuous mapping from input to output with arbitrary accuracy
But remember: need to avoid overfitting / memorizing the training data = early stopping!

= Automatic differentiation gives the derivatives efficiently (how? = outside of scope of 188)

Computer Vision

Object Detection Manual Feature Design

Features and Generalization Features and Generalization

[HoG: Dalal and Triggs, 2005]

Performance
ImageNet Error Rate 2010-2014

Performance
ImageNet Error Rate 2010-2014

Traditional CV Traditional CV

2
g
-4
g
i}

2
g
-4
g
i}

graph credit Matt

graph credit Matt
Zeiler, Clarifai

Zeiler, Clarifai

Performance

ImageNet Error Rate 2010-2014

Traditional CV @) Deep Leaming

Error Rate

AlexNet

2012

graph credit Matt
Zeiler, Clarifai

Performance

Performance
ImageNet Error Rate 2010-2014

Traditional CV @) Deep Leaming

Error Rate

AlexNet

2012

graph credit Matt
Zeiler, Clarifai

MS COCO Image Captioning Challenge

ImageNet Error Rate 2010-2014

Traditional CV @) Deep Leaming

Error Rate

graph credit Matt
Zeiler, Clarifai

Visual QA Challenge

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C. Lawrence Zitnick, Devi Parikh

boy s doing backflip

‘man in black shirt is ‘construction worker in two young girls are
playing guitar orange safety vest is playing with lego toy" wakeboard”
working on road.”

*young girlin pink shirtis “man in blue wetsuit is

‘girlin pink dress is
jumping in air” jumps over bar” swinging on swing” surfing on wave”

Karpathy & Fei-Fei, 2015; Donahue et al., 2015; Xu et al, 2015; many more

Speech Recognition

What vegetable is on the How many school busses
plate? are there?
Neural Net: Neural Net:

Truth

sround Truth:

What uniform is she

wearing?
Neural Net: t
Ground Truth: cereal Ground Truth: girl scout

TIMIT Speech Recognition

Traditional ® Deep Learning

2000 2002 2004 2006 2008 2010 2012 2014 graph credit Matt Zeiler, Clarifai

Machine Translation Next: More Neural Net Applications!

GOOg € Neural Vlacnine rransration (N production)

Encoder 60 [l © e | 9 Sl O |l © S| ©6

Decoder d — ds — d- ey ds

