Today

- Neural Nets -- wrap
- Formalizing Learning
 - Consistency
 - Simplicity
- Decision Trees
 - Expressiveness
 - Information Gain
 - Overfitting

Deep Neural Network: Also Learn the Features!

- Training the deep neural network is just like logistic regression:

\[
\max_w \quad ll(w) = \max_w \sum_i \log P(y^{(i)}|x^{(i)}; w)
\]

- Just \(w\) tends to be a much, much larger vector 😊

\[
\rightarrow \text{just run gradient ascent}
\]

+ stop when log likelihood of hold-out data starts to decrease
Neural Networks Properties

- **Theorem (Universal Function Approximators).** A two-layer neural network with a sufficient number of neurons can approximate any continuous function to any desired accuracy.

- **Practical considerations**
 - Can be seen as learning the features
 - Large number of neurons
 - Danger for overfitting
 - (hence early stopping!)

How well does it work?

Computer Vision

Object Detection
MS COCO Image Captioning Challenge

- "Man in black shirt is playing guitar."
- "Construction worker in orange safety vest is working on road."
- "Two young girls are playing with toy."
- "Boy is doing backflip on wakeboard."
- "Girl in pink dress is jumping in air."
- "Black and white dog jumps over taxi."
- "Young girl in pink shirt is swinging on swing."
- "Man in blue wetsuit is surfing on wave."

Karpathy & Fei-Fei, 2015; Donahue et al., 2015; Xu et al., 2015; many more

Visual QA Challenge

- What vegetable is on the plate? Neural Net: broccoli
- What color are the shoes on the person's feet? Neural Net: brown
- How many school buses are there? Neural Net: 2
- What sport is this? Neural Net: baseball
- What is on top of the refrigerator? Neural Net: magnets
- What uniform is the girl wearing? Neural Net: shorts
- What is the table number? Neural Net: 4
- What are people sitting under in the back? Neural Net: bench

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C. Lawrence Zitnick, Devi Parikh

Speech Recognition

- TIMIT Speech Recognition

Machine Translation

- Google Neural Machine Translation (in production)

- Graph credit Matt Zeiler, Clarifai
Today

- Neural Nets -- wrap
- Formalizing Learning
 - Consistency
 - Simplicity
- Decision Trees
 - Expressiveness
 - Information Gain
 - Overfitting
- Clustering

Inductive Learning (Science)

- Simplest form: learn a function from examples
 - A target function: \(g \)
 - Examples: input-output pairs \((x, g(x))\)
 - E.g. \(x \) is an email and \(g(x) \) is spam / ham
 - E.g. \(x \) is a house and \(g(x) \) is its selling price
- Problem:
 - Given a hypothesis space \(H \)
 - Given a training set of examples \(X \)
 - Find a hypothesis \(h(x) \) such that \(h \approx g \)
- Includes:
 - Classification (outputs = class labels)
 - Regression (outputs = real numbers)
- How do perceptron and naïve Bayes fit in? \((H, h, g, \text{etc.})\)

Inductive Learning

- Curve fitting (regression, function approximation):

- Consistency vs. simplicity
- Ockham’s razor
Consistency vs. Simplicity

- Fundamental tradeoff: bias vs. variance
- Usually algorithms prefer consistency by default (why?)
- Several ways to operationalize “simplicity”
 - Reduce the hypothesis space
 - Assume more: e.g. independence assumptions, as in naive Bayes
 - Have fewer, better features / attributes: feature selection
 - Other structural limitations (decision lists vs trees)
 - Regularization
 - Smoothing: cautious use of small counts
 - Many other generalization parameters (pruning cutoffs today)
 - Hypothesis space stays big, but harder to get to the outskirts

Reminder: Features

- Features, aka attributes
 - Sometimes: TYPE=French
 - Sometimes: $f_{\text{isFrench}}(x) = 1$

<table>
<thead>
<tr>
<th>Example (x)</th>
<th>Attr</th>
<th>Box</th>
<th>Fr</th>
<th>Hu</th>
<th>Pet</th>
<th>Price</th>
<th>Rain</th>
<th>Bca</th>
<th>Type</th>
<th>Ess</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>Some</td>
<td>$$$</td>
<td>F</td>
<td>T</td>
<td>French</td>
<td>0–10</td>
<td>T</td>
</tr>
<tr>
<td>X2</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>Full</td>
<td>$$</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>30–60</td>
<td>F</td>
</tr>
<tr>
<td>X3</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>Some</td>
<td>$$$</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>Burger</td>
<td>0–10</td>
</tr>
<tr>
<td>X4</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>Full</td>
<td>$$</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>Thai</td>
<td>10–30</td>
</tr>
<tr>
<td>X5</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>Full</td>
<td>$$$</td>
<td>F</td>
<td>T</td>
<td>French</td>
<td>>60</td>
<td>F</td>
</tr>
<tr>
<td>X6</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>Some</td>
<td>$$$</td>
<td>T</td>
<td>T</td>
<td>Italian</td>
<td>0–10</td>
<td>T</td>
</tr>
<tr>
<td>X7</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>None</td>
<td>$$</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>Burger</td>
<td>0–10</td>
</tr>
<tr>
<td>X8</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>Some</td>
<td>$$$</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>Thai</td>
<td>0–10</td>
</tr>
<tr>
<td>X9</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>Full</td>
<td>$$</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>Burger</td>
<td>>60</td>
</tr>
<tr>
<td>X10</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>Full</td>
<td>$$$</td>
<td>T</td>
<td>T</td>
<td>Italian</td>
<td>10–30</td>
<td>F</td>
</tr>
<tr>
<td>X11</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>None</td>
<td>$$</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>Thai</td>
<td>0–10</td>
</tr>
<tr>
<td>X12</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>Full</td>
<td>$$</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>Burger</td>
<td>30–60</td>
</tr>
</tbody>
</table>

Decision Trees

- Compact representation of a function:
 - Truth table
 - Conditional probability table
 - Regression values

- True function
 - Realizable: in H
Expressiveness of DTs

- Can express any function of the features

```
    A B A xor B
    F F F
    F T T
    T F T
    T T F
```

\[P(C|A, B) \]

- However, we hope for compact trees

Comparison: Perceptrons

- What is the expressiveness of a perceptron over these features?

<table>
<thead>
<tr>
<th>Example</th>
<th>All</th>
<th>Bar</th>
<th>First</th>
<th>Home</th>
<th>Pat</th>
<th>Price</th>
<th>Brain</th>
<th>Race</th>
<th>Type</th>
<th>Est</th>
<th>Will Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>0-10</td>
<td>F</td>
</tr>
<tr>
<td>X2</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>Th</td>
<td>0-60</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>

- For a perceptron, a feature's contribution is either positive or negative
 - If you want one feature's effect to depend on another, you have to add a new conjunction feature
 - E.g., adding "PATRONS=full \& WAIT = 60" allows a perceptron to model the interaction between the two atomic features

- DTs automatically conjoin features / attributes
 - Features can have different effects in different branches of the tree!

- Difference between modeling relative evidence weighting (NB) and complex evidence interaction (DTs)
 - Though if the interactions are too complex, may not find the DT greedily

Hypothesis Spaces

- How many distinct decision trees with n Boolean attributes?
 - Number of Boolean functions over n attributes
 - Number of distinct truth tables with 2^n rows
 - \(2^{2^n} \)
 - E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees

- How many trees of depth 1 (decision stumps)?
 - Number of Boolean functions over 1 attribute
 - Number of truth tables with 2 rows, times n
 - 4n
 - E.g., with 6 Boolean attributes, there are 24 decision stumps

- More expressive hypothesis space:
 - Increases chance that target function can be expressed (good)
 - Increases number of hypotheses consistent with training set (bad, why?)
 - Means we can get better predictions (lower bias)
 - But we may get worse predictions (higher variance)

Decision Tree Learning

- Aim: find a small tree consistent with the training examples
- Idea: (recursively) choose "most significant" attribute as root of (sub)tree

```
function DTL(examples, attributes, default) returns a decision tree
if examples is empty then return default
else if all examples have the same classification then return the classification
else if attributes is empty then return Mode(examples)
    best = Choose-Attribute(attributes, examples)
    tree = a new decision tree with root test best
    for each value v_i of best do
        examples = elements of examples with best = v_i
        subtree = DTL(examples, attributes - best, Mode(examples))
        add a branch to tree with label v_i and subtree subtree
    return tree
```
Choosing an Attribute

- Idea: a good attribute splits the examples into subsets that are (ideally) “all positive” or “all negative”

- So: we need a measure of how “good” a split is, even if the results aren’t perfectly separated out

Entropy and Information

- Information answers questions
 - The more uncertain about the answer initially, the more information in the answer
 - Scale: bits
 - Answer to Boolean question with prior <1/2, 1/2>?
 - Answer to 4-way question with prior <1/4, 1/4, 1/4, 1/4>?
 - Answer to 4-way question with prior <0, 0, 0, 1>?
 - Answer to 3-way question with prior <1/2, 1/4, 1/4>?

- A probability p is typical of:
 - A uniform distribution of size 1/p
 - A code of length $\log 1/p$

Entropy

- General answer: if prior is $<p_1, \ldots, p_n>$:
 - Information is the expected code length
 $$H(p_1, \ldots, p_n) = E_p \log_2 1/p_i = \sum_{i=1}^{n} -p_i \log_2 p_i$$
 - Also called the entropy of the distribution
 - More uniform = higher entropy
 - More values = higher entropy
 - More peaked = lower entropy
 - Rare values almost “don’t count”

Information Gain

- Back to decision trees!
- For each split, compare entropy before and after
 - Difference is the information gain
 - Problem: there’s more than one distribution after split!

- Solution: use expected entropy, weighted by the number of examples
Next Step: Recurse

- Now we need to keep growing the tree!
- Two branches are done (why?)
- What to do under “full”? See what examples are there...

Example: Learned Tree

- Decision tree learned from these 12 examples:
 - Substantially simpler than “true” tree
 - A more complex hypothesis isn’t justified by data
 - Also: it’s reasonable, but wrong

Example: Miles Per Gallon

<table>
<thead>
<tr>
<th>Example</th>
<th>mpg</th>
<th>cylinders</th>
<th>displacement</th>
<th>horsepower</th>
<th>weight</th>
<th>acceleration</th>
<th>make</th>
<th>modelyear</th>
<th>maker</th>
</tr>
</thead>
<tbody>
<tr>
<td>good</td>
<td>4</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>high</td>
<td></td>
<td>asia</td>
<td>70s-78</td>
<td></td>
</tr>
<tr>
<td>bad</td>
<td>6</td>
<td>medium</td>
<td>medium</td>
<td>medium</td>
<td>medium</td>
<td></td>
<td>america</td>
<td>70s-78</td>
<td>america</td>
</tr>
<tr>
<td>bad</td>
<td>2</td>
<td>high</td>
<td>high</td>
<td>low</td>
<td>low</td>
<td></td>
<td>america</td>
<td>70s-78</td>
<td>america</td>
</tr>
<tr>
<td>bad</td>
<td>4</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>medium</td>
<td></td>
<td>europe</td>
<td>70s-78</td>
<td>america</td>
</tr>
<tr>
<td>bad</td>
<td>6</td>
<td>medium</td>
<td>medium</td>
<td>medium</td>
<td>high</td>
<td></td>
<td>america</td>
<td>70s-78</td>
<td>america</td>
</tr>
<tr>
<td>bad</td>
<td>4</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td></td>
<td>europe</td>
<td>70s-78</td>
<td>america</td>
</tr>
<tr>
<td>bad</td>
<td>2</td>
<td>high</td>
<td>high</td>
<td>low</td>
<td>low</td>
<td></td>
<td>america</td>
<td>70s-78</td>
<td>america</td>
</tr>
<tr>
<td>good</td>
<td>4</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>high</td>
<td></td>
<td>america</td>
<td>70s-78</td>
<td>america</td>
</tr>
<tr>
<td>bad</td>
<td>6</td>
<td>medium</td>
<td>medium</td>
<td>medium</td>
<td>medium</td>
<td></td>
<td>america</td>
<td>70s-78</td>
<td>america</td>
</tr>
<tr>
<td>bad</td>
<td>4</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>medium</td>
<td></td>
<td>america</td>
<td>70s-78</td>
<td>america</td>
</tr>
<tr>
<td>bad</td>
<td>6</td>
<td>medium</td>
<td>medium</td>
<td>medium</td>
<td>medium</td>
<td></td>
<td>america</td>
<td>70s-78</td>
<td>america</td>
</tr>
<tr>
<td>bad</td>
<td>6</td>
<td>medium</td>
<td>medium</td>
<td>medium</td>
<td>high</td>
<td></td>
<td>america</td>
<td>70s-78</td>
<td>america</td>
</tr>
<tr>
<td>bad</td>
<td>4</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>medium</td>
<td></td>
<td>america</td>
<td>70s-78</td>
<td>america</td>
</tr>
<tr>
<td>bad</td>
<td>6</td>
<td>medium</td>
<td>medium</td>
<td>medium</td>
<td>medium</td>
<td></td>
<td>america</td>
<td>70s-78</td>
<td>america</td>
</tr>
<tr>
<td>bad</td>
<td>6</td>
<td>medium</td>
<td>medium</td>
<td>medium</td>
<td>high</td>
<td></td>
<td>america</td>
<td>70s-78</td>
<td>america</td>
</tr>
<tr>
<td>good</td>
<td>4</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>high</td>
<td></td>
<td>europe</td>
<td>70s-78</td>
<td>europe</td>
</tr>
<tr>
<td>bad</td>
<td>6</td>
<td>medium</td>
<td>medium</td>
<td>medium</td>
<td>medium</td>
<td></td>
<td>europe</td>
<td>70s-78</td>
<td>europe</td>
</tr>
<tr>
<td>bad</td>
<td>6</td>
<td>medium</td>
<td>medium</td>
<td>medium</td>
<td>high</td>
<td></td>
<td>europe</td>
<td>70s-78</td>
<td>europe</td>
</tr>
<tr>
<td>good</td>
<td>4</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>medium</td>
<td></td>
<td>europe</td>
<td>70s-78</td>
<td>europe</td>
</tr>
<tr>
<td>bad</td>
<td>6</td>
<td>medium</td>
<td>medium</td>
<td>medium</td>
<td>medium</td>
<td></td>
<td>europe</td>
<td>70s-78</td>
<td>europe</td>
</tr>
</tbody>
</table>

Find the First Split

- Look at information gain for each attribute
- Note that each attribute is correlated with the target!
- What do we split on?
Reminder: Overfitting

- **Overfitting:**
 - When you stop modeling the patterns in the training data (which generalize)
 - And start modeling the noise (which doesn’t)

- **We had this before:**
 - Naïve Bayes: needed to smooth
 - Perceptron: early stopping
The test set error is much worse than the training set error... why?

Significance of a Split

- Starting with:
 - Three cars with 4 cylinders, from Asia, with medium HP
 - 2 bad MPG
 - 1 good MPG
- What do we expect from a three-way split?
 - Maybe each example in its own subset?
 - Maybe just what we saw in the last slide?
- Probably shouldn’t split if the counts are so small they could be due to chance
- A chi-squared test can tell us how likely it is that deviations from a perfect split are due to chance
- Each split will have a significance value, P_{CHANCE}

Keeping it General

- Pruning:
 - Build the full decision tree
 - Begin at the bottom of the tree
 - Delete splits in which $P_{\text{CHANCE}} > \text{MaxP}_{\text{CHANCE}}$
 - Continue working upward until there are no more prunable nodes
 - Note: some chance nodes may not get pruned because they were “redeemed” later

\[y = a \text{ XOR } b \]
Pruning example

- **With MaxP\textsubscript{CHANCE} = 0.1:**

 ![Pruning example diagram](image)

 Note the improved test set accuracy compared with the unpruned tree.

<table>
<thead>
<tr>
<th>Num Errors</th>
<th>Set Size</th>
<th>Percent Wrong</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training Set</td>
<td>5</td>
<td>12.50</td>
</tr>
<tr>
<td>Test Set</td>
<td>56</td>
<td>15.91</td>
</tr>
</tbody>
</table>

Regularization

- **MaxP\textsubscript{CHANCE} is a regularization parameter**
- Generally, set it using held-out data (as usual)

Two Ways of Controlling Overfitting

- **Limit the hypothesis space**
 - E.g. limit the max depth of trees
 - Easier to analyze

- **Regularize the hypothesis selection**
 - E.g. chance cutoff
 - Disprefer most of the hypotheses unless data is clear
 - Usually done in practice

Next Lecture: Applications!