CS 188: Artificial Intelligence So Far: Foundational Methods

Advanced Applications: Robotics**

Instructors: Pieter Abbeel & Dan Klein --- University of California, Berkeley

These slides were created by Dan Klein, Pieter Abbeel and Anca Dragan for CS188 Intro to Al at UC Berkeley.

All CS188 materials are available at http://ai.berkeley.edu

Now: Advanced Applications
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Google is trying to make artificial
intelligence history — and it could happen
this week
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Checkers Chess Go Pacmon.

# mMIEER InTwo Moves, AlphaGo and Lee Sedol Redefined the Future ~ sussc RIBE
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How would you
make an Al for Go?



MiniMax!

MAX (X)

MIN (0)

MAX (X)

MIN (0)

TERMINAL

Utility -1

£ 2 2 £ 2 2 22 2

EA¢eixeoenrsx

In particular, why is it harder than chess?

Why is it hard?
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Exhaustive search

Reducing depth with value network
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Reducing breadth with policy network
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Neural network training pipeline
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Supervised Learning Reinforcement Learning
policy network policy network

Self-play data Value network
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N-Layer Neural Network
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One more thing: Monte-Carlo rollouts
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Mastering the game of Go without human
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Editorial Summary

AlphaGo Zero goes solo

To beat world champions at the game of Go,
the computer program AlphaGo has relied
largely on supervised learning from millions of
human expert moves. David Silver and
colleagues have now produced a system called
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Mastering the game of Go with deep neural
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Robotic Helicopters

| Audio & Video | For Authors

Editor's summary Ayl

The victory in 1997 of the chess-playing computer
Deep Blue in a six-game series against the then
world champion Gary Kasparov was seen as a
significant milestone in the development of artificial
inte.

«)) Related audio

Hear from the makers of the Al that mastered Go -
and the professional player it beat.
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Motivating Example Autonomous Helicopter Flight

= Key challenges:

= Track helicopter position and orientation during flight

. . = Decide on control inputs to send to helicopter
= How do we execute a task like this?

Autonomous Helicopter Setup HMM for Tracking the Helicopter

50 S1 52

On-board inertial ‘

‘ measurement unit (IMU) @ @ @

Position T S
\4 st s = (2,200,155, £, .6, 1)

Send out controls to
helicopter = Measurements: [observation update]

= 3-D coordinates from vision, 3-axis magnetometer, 3-axis gyro, 3-axis accelerometer

= Transitions (dynamics): [time elapse update]
" S, =f(sy, @) +w; f: encodes helicopter dynamics, w: noise




Helicopter MDP Problem: What’s the Reward?

= State: § = (.x,y,Z,¢,9,¢,it}y727¢79‘5¢)

= Actions (control inputs):
= Qion: Main rotor longitudinal cyclic pitch control (affects pitch rate)
= 3i5r: Main rotor latitudinal cyclic pitch control (affects roll rate)
= Qg : Main rotor collective pitch (affects main rotor thrust)

= Reward for hovering:

= Qapq: Tail rotor collective pitch (affects tail rotor thrust) —o, (Z — *)2
. . — j,'2
= Transitions (dynamics): z
-2
" Suq=f(s, @) +w, —Qgyy
[f encodes helicopter dynamics] —Qs 732
z

[w is a probabilistic noise model]

= Can we solve the MDP yet?

RL: Helicopter Flight Problem for More General Case: What’s the Reward?

= Rewards for “Flip”?
= Problem: what’s the target trajectory?

= Just write it down by hand?

[Andrew Ng]




Helicopter Apprenticeship?

[VIDEO: airshow_unaligned.wmv]

Demonstrations Learning a Trajectory

= OO0
- 9000 0@e
- 9000000 e

* HMM-like generative model
— Dynamics model used as HMM transition model
— Demos are observations of hidden trajectory
* Problem: how do we align observations to hidden

trajectory?
Abbeel, Coates, Ng, IJRR 2010



[VIDEO: airshow_unaligned.wmv]

Probabilistic Alignment using a Bayes’ Net Aligned Demonstrations

e
Tadiant

Demo 2

= Dynamic Time Warping

(Needleman&Wunsch 1970, Sakoe&Chiba, 1978)
= Extended Kalman filter / smoother

Abbeel, Coates, Ng, IJRR 2010

Alignment of Samples Learned Behavior

15F
— 10
£
29

-5+

10 20 30 40 50
North (m)

= Result: inferred sequence is much cleaner!

[Abbeel, Coates, Quigley, Ng, 2010]




Legged Locomotion For Perspective: Darpa Robotics Challenge (2015)

How About Continuous Control, e.g., Locomotion? Learning Locomotion

Iteration 0
Robot models in physics simulator
(MuJoCo, from Emo Todorov)

Input: joint angles and velocities
Output: joint torques

Neural network architecture:

[Schulman, Moritz, Levine, Jordan, Abbeel, 2015]



Deep RL: Virtual Stuntman Quadruped
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[Peng, Abbeel, Levine, van de Panne, 2018] ! Y e [Kolter, Abbeel & Ng, 2008]

= Low-level control problem: moving a foot into a new location
-> search with successor function ~ moving the motors

i
X ;
A

= High-level control problem: where should we place the feet?

= Reward function R(x) = w .f(s) [25 features]

Reward Learning + Reinforcement Learning Without reward learning

= Demonstrate path across the “training terrain”

= Learn the reward function
= Receive “testing terrain”---height map.

= Find the optimal policy with respect to the learned reward
function for crossing the testing terrain. [Kolter, Abbeel & Ng, 2008]




With reward learning Autonomous Driving

Grand Challenge 2005: Barstow, CA, to Primm, NV Autonomous Vehicles
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150 mile off-road robot race
across the Mojave desert
R Natural and manmade hazards
_qugu'aﬁqa \: = No driver, no remote control
- No dynamic passing

Autonomous vehicle slides adapted from Sebastian Thrun



Grand Challenge 2005 Nova Video Grand Challenge 2005 - Bad

[VIDEO: nova-race-supershort.mpd] [VIDEO: grand challenge — bad.wmy]

An Autonomous Car Actions: Steering Control

GPS compass adar

6 Computers ~ Control Screen

Steering motor Steering

Angle
| (with respect
..... . to trajectory)



Laser Readings for Flat / Empty Road Laser Readings for Road with Obstacle

Obstacle Detection Probabilistic Error Model

Trigger if |Z—Z/| > 15c¢m for nearby z, z/
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Raw Measurements: 12.6% false positives



HMMs for Detection Sensors: Camera

Raw Measurements: 12.6% false positives HMM Inference: 0.02% false positives

[VIDEO: lidar vision for a car]

Vision for a Car Vision for a Car




[VIDEO: self-supervised vision]

Self-Supervised Vision Urban Environments

[VIDEO: ROBOTICS — gcar.m4v]

Google Self-Driving Car (2013) Recent Progress: NN Semantic Scene Segmentation

~ neural net classifies every pixel

(mostly lidar) PSPNet50



Self-Driving Cars -- Stats Self-Driving Cars -- Stats

14 Autonomous vehicle safety progress {jutonomous vehicle safety progress (log scale) 80 Autonomotfs vehicle safe‘ty progress Ayitonomous vehicle safety progress (log scale)
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Energy-Inference-Accuracy Landscape on the Squeezelator Personal Robotics

ImageNet energy-accuracy for different NNs
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[slide credit: Kurt Keutzer]



Challenge Task: Robotic Laundry

G

[Wyrobek, Berger, van der Loos, Salisbury, ICRA 2008]

Pieter Abbeel -- UC Berkeley | Gradescope | Covariant.Al

Sock Sorting

Five previously unseen socks are placed on the table.

Pieter Abbeel -- UC Berkeley /
[Levine*, Finn*, Darrell, Abbeel, JIMLRRENA]/ Gradescope




Reinforcement Learning Learned Skills

Pieter Abbeel -- UC Berkeley /
[Levine*, Finn*, Darrell, Abbeel, JMLR 2016] [Levine*, Finn*, Darrell, AbbeePPRIR 28EBlescope

Next Time:

Natural language processing

Final contest
= Course wrap-up

Where to go next
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[Levine et al, 2016]




