Announcements

- **Homework 1: Search**
 - Has been released! Due **Tuesday, Sep 4th, at 11:59pm**.
 - Electronic component: on Gradescope, instant grading, submit as often as you like.
 - Written component: exam-style template to be completed (we recommend on paper) and to be submitted into Gradescope (graded on effort/completion).

- **Project 1: Search**
 - Has been released! Due **Friday, Sep 7th, at 4pm**.
 - Start early and ask questions. It's longer than most!

- **Sections**
 - Started this week
 - You can go to any, but have priority in your own
 - Section webcasts

CS 188: Artificial Intelligence

Informed Search

Instructors: Pieter Abbeel & Dan Klein

University of California, Berkeley
Today

- Informed Search
 - Heuristics
 - Greedy Search
 - A* Search
- Graph Search

Recap: Search
Recap: Search

- **Search problem:**
 - States (configurations of the world)
 - Actions and costs
 - Successor function (world dynamics)
 - Start state and goal test

- **Search tree:**
 - Nodes: represent plans for reaching states
 - Plans have costs (sum of action costs)

- **Search algorithm:**
 - Systematically builds a search tree
 - Chooses an ordering of the fringe (unexplored nodes)
 - Optimal: finds least-cost plans

Example: Pancake Problem

Cost: Number of pancakes flipped
Example: Pancake Problem

State space graph with costs as weights
General Tree Search

```
function TREE-SEARCH(problem, strategy) returns a solution, or failure
    initialize the search tree using the initial state of problem
    loop do
        if there are no candidates for expansion then return failure
        choose a leaf node for expansion according to strategy
        if the node contains a goal state then return the corresponding solution
        else expand the node and add the resulting nodes to the search tree
    end
```

The One Queue

- All these search algorithms are the same except for fringe strategies
 - Conceptually, all fringes are priority queues (i.e. collections of nodes with attached priorities)
 - Practically, for DFS and BFS, you can avoid the log(n) overhead from an actual priority queue, by using stacks and queues
 - Can even code one implementation that takes a variable queuing object
Uninformed Search

Strategy: expand lowest path cost

The good: UCS is complete and optimal!

The bad:
- Explores options in every “direction”
- No information about goal location

Uniform Cost Search

[Demo: contours UCS empty (L3D1)]
[Demo: contours UCS pacman small maze (L3D3)]
Video of Demo Contours UCS Empty

Video of Demo Contours UCS Pacman Small Maze
Informed Search

Search Heuristics

- A heuristic is:
 - A function that estimates how close a state is to a goal
 - Designed for a particular search problem
 - Examples: Manhattan distance, Euclidean distance for pathing
Example: Heuristic Function

Heuristic: the number of the largest pancake that is still out of place

\[h(x) \]
Greedy Search

Example: Heuristic Function

$h(x)$
Greedy Search

- Expand the node that seems closest...

- What can go wrong?

Greedy Search

- Strategy: expand a node that you think is closest to a goal state
 - Heuristic: estimate of distance to nearest goal for each state

- A common case:
 - Best-first takes you straight to the (wrong) goal

- Worst-case: like a badly-guided DFS

[Demo: contours greedy empty (L3D1)]
[Demo: contours greedy pacman small maze (L3D4)]
Video of Demo Contours Greedy (Empty)

Video of Demo Contours Greedy (Pacman Small Maze)
A* Search
Combining UCS and Greedy

- **Uniform-cost** orders by path cost, or backward cost: $g(n)$
- **Greedy** orders by goal proximity, or forward cost: $h(n)$

- **A* Search** orders by the sum: $f(n) = g(n) + h(n)$

Example: Teg Grenager

When should A* terminate?

- Should we stop when we enqueue a goal?
- No: only stop when we dequeue a goal
Is A* Optimal?

- What went wrong?
 - Actual bad goal cost < estimated good goal cost
 - We need estimates to be less than actual costs!

Admissible Heuristics
Idea: Admissibility

Admissible Heuristics

- A heuristic \(h \) is **admissible** (optimistic) if:

 \[0 \leq h(n) \leq h^*(n) \]

 where \(h^*(n) \) is the true cost to a nearest goal

- Examples:

- Coming up with admissible heuristics is most of what’s involved in using A* in practice.
Assume:
- A is an optimal goal node
- B is a suboptimal goal node
- h is admissible

Claim:
- A will exit the fringe before B
Proof:
- Imagine B is on the fringe
- Some ancestor \(n \) of A is on the fringe, too (maybe A!)
- Claim: \(n \) will be expanded before B
 1. \(f(n) \) is less or equal to \(f(A) \)
 2. \(f(A) \) is less than \(f(B) \)

\[
\begin{align*}
 f(n) &= g(n) + h(n) & \text{Definition of f-cost} \\
 f(n) &\leq g(A) & \text{Admissibility of h} \\
 g(A) &= f(A) & \text{h = 0 at a goal}
\end{align*}
\]
Proof:

- Imagine B is on the fringe
- Some ancestor \(n \) of A is on the fringe, too (maybe A!)
- Claim: \(n \) will be expanded before B
 1. \(f(n) \) is less or equal to \(f(A) \)
 2. \(f(A) \) is less than \(f(B) \)
 3. \(n \) expands before B
- All ancestors of A expand before B
- A expands before B
- A* search is optimal

Properties of A*
Properties of A*

Uniform-Cost

A*

UCS vs A* Contours

- Uniform-cost expands equally in all “directions”

- A* expands mainly toward the goal, but does hedge its bets to ensure optimality

[Demo: contours UCS / greedy / A* empty (L3D1)]
[Demo: contours A* pacman small maze (L3DS)]
Video of Demo Contours (Empty) -- UCS

Video of Demo Contours (Empty) -- Greedy
Video of Demo Contours (Empty) – A*

Video of Demo Contours (Pacman Small Maze) – A*
Comparison

Greedy Uniform Cost A*

A* Applications
A* Applications

- Video games
- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition
- ...

[Demo: UCS / A* pacman tiny maze (L3D6,L3D7)]
[Demo: guess algorithm Empty Shallow/Deep (L3D8)]

Video of Demo Pacman (Tiny Maze) – UCS / A*
Video of Demo Empty Water Shallow/Deep – Guess Algorithm

Creating Heuristics
Creating Admissible Heuristics

- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics.

- Often, admissible heuristics are solutions to relaxed problems, where new actions are available.

- Inadmissible heuristics are often useful too.

Example: 8 Puzzle

- What are the states?
- How many states?
- What are the actions?
- How many successors from the start state?
- What should the costs be?
8 Puzzle I

- Heuristic: Number of tiles misplaced
- Why is it admissible?
- $h(\text{start}) = 8$
- This is a relaxed-problem heuristic

<table>
<thead>
<tr>
<th>Start State</th>
<th>Goal State</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 2 4</td>
<td>1 2</td>
</tr>
<tr>
<td>5 6</td>
<td>3 4 5</td>
</tr>
<tr>
<td>8 3 1</td>
<td>6 7 8</td>
</tr>
</tbody>
</table>

Average nodes expanded when the optimal path has...

...4 steps ...8 steps ...12 steps
UCS 112 6,300 3.6 x 10^6
TILES 13 39 227

Statistics from Andrew Moore

8 Puzzle II

- What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?
- Total Manhattan distance
- Why is it admissible?
- $h(\text{start}) = 3 + 1 + 2 + ... = 18$

<table>
<thead>
<tr>
<th>Start State</th>
<th>Goal State</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 2 4</td>
<td>1 2</td>
</tr>
<tr>
<td>5 6</td>
<td>3 4 5</td>
</tr>
<tr>
<td>8 3 1</td>
<td>6 7 8</td>
</tr>
</tbody>
</table>

Average nodes expanded when the optimal path has...

...4 steps ...8 steps ...12 steps
TILES 13 39 227
MANHATTAN 12 25 73
8 Puzzle III

- How about using the actual cost as a heuristic?
 - Would it be admissible?
 - Would we save on nodes expanded?
 - What’s wrong with it?

- With A*: a trade-off between quality of estimate and work per node
 - As heuristics get closer to the true cost, you will expand fewer nodes but usually do more work per node to compute the heuristic itself

Semi-Lattice of Heuristics
Trivial Heuristics, Dominance

- Dominance: \(h_a(n) \geq h_c(n) \) if
 \[\forall n : h_a(n) \geq h_c(n) \]

- Heuristics form a semi-lattice:
 - Max of admissible heuristics is admissible
 \[h(n) = \max(h_a(n), h_b(n)) \]

- Trivial heuristics
 - Bottom of lattice is the zero heuristic (what does this give us?)
 - Top of lattice is the exact heuristic

Graph Search
Tree Search: Extra Work!

- Failure to detect repeated states can cause exponentially more work.

Graph Search

- In BFS, for example, we shouldn’t bother expanding the circled nodes (why?)
Graph Search

- **Idea:** never expand a state twice

- **How to implement:**
 - Tree search + set of expanded states (“closed set”)
 - Expand the search tree node-by-node, but...
 - Before expanding a node, check to make sure its state has never been expanded before
 - If not new, skip it, if new add to closed set

- **Important:** store the closed set as a set, not a list

- Can graph search wreck completeness? Why/why not?

- How about optimality?

A* Graph Search Gone Wrong?

State space graph

Search tree
Consistency of Heuristics

- **Main idea:** estimated heuristic costs ≤ actual costs
 - **Admissibility:** heuristic cost ≤ actual cost to goal
 \[h(A) \leq \text{actual cost from A to G} \]
 - **Consistency:** heuristic “arc” cost ≤ actual cost for each arc
 \[h(A) - h(C) \leq \text{cost}(A \text{ to } C) \]

- **Consequences of consistency:**
 - The f value along a path never decreases
 \[h(A) \leq \text{cost}(A \text{ to } C) + h(C) \]
 - A* graph search is optimal

Optimality of A* Graph Search
Optimality of A* Graph Search

- Sketch: consider what A* does with a consistent heuristic:
 - Fact 1: In tree search, A* expands nodes in increasing total f value (f-contours)
 - Fact 2: For every state s, nodes that reach s optimally are expanded before nodes that reach s suboptimally
 - Result: A* graph search is optimal

Optimality

- Tree search:
 - A* is optimal if heuristic is admissible
 - UCS is a special case (h = 0)

- Graph search:
 - A* optimal if heuristic is consistent
 - UCS optimal (h = 0 is consistent)

- Consistency implies admissibility

- In general, most natural admissible heuristics tend to be consistent, especially if from relaxed problems
A*: Summary

- A* uses both backward costs and (estimates of) forward costs
- A* is optimal with admissible / consistent heuristics
- Heuristic design is key: often use relaxed problems
Tree Search Pseudo-Code

function TREE-SEARCH(problem, fringe) return a solution, or failure
fringe ← INSERT(MAKE-NODE(INITIAL-STATE(problem)), fringe)
loop do
 if fringe is empty then return failure
 node ← REMOVE-FRONT(fringe)
 if GOAL-TEST(problem, STATE[node]) then return node
 for child-node in EXPAND(STATE[node], problem) do
 fringe ← INSERT(child-node, fringe)
 end
end

Graph Search Pseudo-Code

function GRAPH-SEARCH(problem, fringe) return a solution, or failure
closed ← an empty set
fringe ← INSERT(MAKE-NODE(INITIAL-STATE(problem)), fringe)
loop do
 if fringe is empty then return failure
 node ← REMOVE-FRONT(fringe)
 if GOAL-TEST(problem, STATE[node]) then return node
 if STATE[node] is not in closed then
 add STATE[node] to closed
 for child-node in EXPAND(STATE[node], problem) do
 fringe ← INSERT(child-node, fringe)
 end
 end
end
Consider what A* does:

- Expands nodes in increasing total f value (f-contours)
 Reminder: \(f(n) = g(n) + h(n) = \text{cost to } n + \text{heuristic} \)
- Proof idea: the optimal goal(s) have the lowest f value, so it must get expanded first

There’s a problem with this argument. What are we assuming is true?

Proof:

- New possible problem: some \(n \) on path to \(G^* \) isn’t in queue when we need it, because some worse \(n' \) for the same state dequeued and expanded first (disaster!)
- Take the highest such \(n \) in tree
- Let \(p \) be the ancestor of \(n \) that was on the queue when \(n' \) was popped
- \(f(p) < f(n) \) because of consistency
- \(f(n) < f(n') \) because \(n' \) is suboptimal
- \(p \) would have been expanded before \(n' \)
- Contradiction!