Announcements

■ Homework 1: Search

- Has been released! Due Tuesday, Sep 4th, at 11:59pm.
 - Electronic component: on Gradescope, instant grading, submit as often as you like.
 - Written component: exam-style template to be completed (we recommend on paper) and to be submitted into Gradescope (graded on effort/completion)

Project 1: Search

- Has been released! Due Friday, Sep 7th, at 4pm.
- Start early and ask questions. It's longer than most!

Sections

- Started this week
- You can go to any, but have priority in your own
- Section webcasts

CS 188: Artificial Intelligence

Informed Search

Instructors: Pieter Abbeel & Dan Klein
University of California, Berkeley

Today

Informed Search

- Heuristics
- Greedy Search
- A* Search
- Graph Search

Recap: Search

Recap: Search

Search problem:

- States (configurations of the world)
- Actions and costs
- Successor function (world dynamics)
- Start state and goal test

Search tree:

- Nodes: represent plans for reaching states
- Plans have costs (sum of action costs)

Search algorithm:

- Systematically builds a search tree
- Chooses an ordering of the fringe (unexplored nodes)
- Optimal: finds least-cost plans

Example: Pancake Problem

Cost: Number of pancakes flipped

Example: Pancake Problem

BOUNDS FOR SORTING BY PREFIX REVERSAL

William H. GATES

Microsoft, Albuquerque, New Mexico

Christos H. PAPADIMITRIOU*†

Department of Electrical Engineering, University of California, Berkeley, CA 94720, U.S.A.

Received 18 January 1978 Revised 28 August 1978

For a permutation σ of the integers from 1 to n, let $f(\sigma)$ be the smallest number of prefix reversals that will transform σ to the identity permutation, and let f(n) be the largest such $f(\sigma)$ for all σ in (the symmetric group) S_n . We show that $f(n) \le (5n+5)/3$, and that $f(n) \ge 17n/16$ for n a multiple of 16. If, furthermore, each integer is required to participate in an even number of reversed prefixes, the corresponding function g(n) is shown to obey $3n/2 - 1 \le g(n) \le 2n + 3$.

Example: Pancake Problem

State space graph with costs as weights

General Tree Search

The One Queue

- All these search algorithms are the same except for fringe strategies
 - Conceptually, all fringes are priority queues (i.e. collections of nodes with attached priorities)
 - Practically, for DFS and BFS, you can avoid the log(n) overhead from an actual priority queue, by using stacks and queues
 - Can even code one implementation that takes a variable queuing object

Uninformed Search

Uniform Cost Search

- Strategy: expand lowest path cost
- The good: UCS is complete and optimal!
- The bad:
 - Explores options in every "direction"
 - No information about goal location

[Demo: contours UCS empty (L3D1)] [Demo: contours UCS pacman small maze (L3D3)]

Informed Search

Search Heuristics

- A heuristic is:
 - A function that *estimates* how close a state is to a goal
 - Designed for a particular search problem
 - Examples: Manhattan distance, Euclidean distance for pathing

Example: Heuristic Function

Example: Heuristic Function

Heuristic: the number of the largest pancake that is still out of place

Greedy Search

Example: Heuristic Function

Greedy Search

- Strategy: expand a node that you think is closest to a goal state
 - Heuristic: estimate of distance to nearest goal for each state

- A common case:
 - Best-first takes you straight to the (wrong) goal
- Worst-case: like a badly-guided DFS

[Demo: contours greedy empty (L3D1)] [Demo: contours greedy pacman small maze (L3D4)]

Video of Demo Contours Greedy (Empty)

Video of Demo Contours Greedy (Pacman Small Maze)

A* Search A* Search

Combining UCS and Greedy

- Uniform-cost orders by path cost, or backward cost g(n)
- Greedy orders by goal proximity, or forward cost h(n)

Example: Teg Grenager

When should A* terminate?

• Should we stop when we enqueue a goal?

■ No: only stop when we dequeue a goal

Is A* Optimal?

Admissible Heuristics

- What went wrong?
- Actual bad goal cost < estimated good goal cost
- We need estimates to be less than actual costs!

Idea: Admissibility

Inadmissible (pessimistic) heuristics break optimality by trapping good plans on the fringe

Admissible (optimistic) heuristics slow down bad plans but never outweigh true costs

Admissible Heuristics

• A heuristic *h* is *admissible* (optimistic) if:

$$0 \le h(n) \le h^*(n)$$

where $h^*(n)$ is the true cost to a nearest goal

Examples:

 Coming up with admissible heuristics is most of what's involved in using A* in practice.

Optimality of A* Tree Search

Optimality of A* Tree Search

Assume:

- A is an optimal goal node
- B is a suboptimal goal node
- h is admissible

Claim:

• A will exit the fringe before B

Optimality of A* Tree Search: Blocking

Proof:

- Imagine B is on the fringe
- Some ancestor *n* of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 - 1. f(n) is less or equal to f(A)

$$f(n) = g(n) + h(n)$$

 $f(n) \leq g(A)$

g(A) = f(A)

Definition of f-cost Admissibility of h h = 0 at a goal

Optimality of A* Tree Search: Blocking

Proof:

- Imagine B is on the fringe
- Some ancestor *n* of A is on the fringe, too (maybe A!)
- Claim: *n* will be expanded before B
 - 1. f(n) is less or equal to f(A)
 - 2. f(A) is less than f(B)

$$g(A) < g(B)$$
$$f(A) < f(B)$$

h = 0 at a goal

Optimality of A* Tree Search: Blocking

Proof:

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 - 1. f(n) is less or equal to f(A)
 - 2. f(A) is less than f(B)
 - 3. *n* expands before B –
- All ancestors of A expand before B
- A expands before B
- A* search is optimal

 $f(n) \le f(A) < f(B)$

Properties of A*

Uniform-Cost

A*

Properties of A*

UCS vs A* Contours

Uniform-cost expands equally in all "directions"

 A* expands mainly toward the goal, but does hedge its bets to ensure optimality

[Demo: contours UCS / greedy / A* empty (L3D1)] [Demo: contours A* pacman small maze (L3D5)]

Video of Demo Contours (Empty) – A*

Video of Demo Contours (Pacman Small Maze) – A*

Comparison A* Applications

Greedy Uniform Cost A*

A* Applications

- Video games
- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition

• ...

[Demo: UCS / A* pacman tiny maze (L3D6,L3D7)] [Demo: guess algorithm Empty Shallow/Deep (L3D8)]

Video of Demo Pacman (Tiny Maze) – UCS / A*

Video of Demo Empty Water Shallow/Deep - Guess Algorithm

Creating Heuristics

Creating Admissible Heuristics

- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics
- Often, admissible heuristics are solutions to relaxed problems, where new actions are available

Inadmissible heuristics are often useful too

Example: 8 Puzzle

- What are the actions?
- How many successors from the start state?
- What should the costs be?

8 Puzzle I

- Heuristic: Number of tiles misplaced
- Why is it admissible?
- h(start) = 8
- This is a *relaxed-problem* heuristic

Start State

Goal State

	Average nodes expanded when the optimal path has			
	4 steps	8 steps	12 steps	
UCS	112	6,300	3.6 x 10 ⁶	
TILES	13	39	227	

Statistics from Andrew Moore

8 Puzzle II

What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?

■ Total *Manhattan* distance

Why is it admissible?

• h(start) = 3 + 1 + 2 + ... = 18

	Average nodes expanded when the optimal path has		
	4 steps	8 steps	12 steps
TILES	13	39	227
MANHATTAN	12	25	73

8 Puzzle III

- How about using the *actual cost* as a heuristic?
 - Would it be admissible?
 - Would we save on nodes expanded?
 - What's wrong with it?

Semi-Lattice of Heuristics

- With A*: a trade-off between quality of estimate and work per node
 - As heuristics get closer to the true cost, you will expand fewer nodes but usually do more work per node to compute the heuristic itself

Trivial Heuristics, Dominance

Graph Search

■ Dominance: $h_a \ge h_c$ if

$$\forall n: h_a(n) \geq h_c(n)$$

- Heuristics form a semi-lattice:
 - Max of admissible heuristics is admissible

$$h(n) = max(h_a(n), h_b(n))$$

- Trivial heuristics
 - Bottom of lattice is the zero heuristic (what does this give us?)
 - Top of lattice is the exact heuristic

Tree Search: Extra Work!

• Failure to detect repeated states can cause exponentially more work.

Graph Search

• In BFS, for example, we shouldn't bother expanding the circled nodes (why?)

Graph Search

A* Graph Search Gone Wrong?

- Idea: never expand a state twice
- How to implement:
 - Tree search + set of expanded states ("closed set")
 - Expand the search tree node-by-node, but...
 - Before expanding a node, check to make sure its state has never been expanded before
 - If not new, skip it, if new add to closed set
- Important: store the closed set as a set, not a list
- Can graph search wreck completeness? Why/why not?
- How about optimality?

S h=4 1 C h=1 B B A=1 G

State space graph

Search tree

Consistency of Heuristics

A 1 C h=1

- Main idea: estimated heuristic costs ≤ actual costs
 - Admissibility: heuristic cost ≤ actual cost to goal
 h(A) ≤ actual cost from A to G
 - Consistency: heuristic "arc" cost ≤ actual cost for each arc
 h(A) h(C) ≤ cost(A to C)
- Consequences of consistency:
 - The f value along a path never decreases
 h(A) ≤ cost(A to C) + h(C)
 - A* graph search is optimal

Optimality of A* Graph Search

Optimality of A* Graph Search

- Sketch: consider what A* does with a consistent heuristic:
 - Fact 1: In tree search, A* expands nodes in increasing total f value (f-contours)
 - Fact 2: For every state s, nodes that reach s optimally are expanded before nodes that reach s suboptimally
 - Result: A* graph search is optimal

Optimality

- Tree search:
 - A* is optimal if heuristic is admissible
 - UCS is a special case (h = 0)
- Graph search:
 - A* optimal if heuristic is consistent
 - UCS optimal (h = 0 is consistent)
- Consistency implies admissibility
- In general, most natural admissible heuristics tend to be consistent, especially if from relaxed problems

A*: Summary

A*: Summary

- A* uses both backward costs and (estimates of) forward costs
- A* is optimal with admissible / consistent heuristics
- Heuristic design is key: often use relaxed problems

Tree Search Pseudo-Code

```
function Tree-Search(problem, fringe) return a solution, or failure
fringe ← Insert(make-node(initial-state[problem]), fringe)
loop do
if fringe is empty then return failure
node ← REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node]) then return node
for child-node in EXPAND(STATE[node], problem) do
fringe ← Insert(child-node, fringe)
end
end
```

Optimality of A* Graph Search

Consider what A* does:

- Expands nodes in increasing total f value (f-contours)
 Reminder: f(n) = g(n) + h(n) = cost to n + heuristic
- Proof idea: the optimal goal(s) have the lowest f value, so it must get expanded first

There's a problem with this argument. What are we assuming is true?

Graph Search Pseudo-Code

```
function Graph-Search(problem, fringe) return a solution, or failure

closed ← an empty set

fringe ← Insert(Make-node(initial-state[problem]), fringe)

loop do

if fringe is empty then return failure

node ← Remove-Front(fringe)

if Goal-Test(problem, state[node]) then return node

if state[node] is not in closed then

add state[node] to closed

for child-node in expand(state[node], problem) do

fringe ← Insert(child-node, fringe)

end

end
```

Optimality of A* Graph Search

Proof:

- New possible problem: some n on path to G*
 isn't in queue when we need it, because some
 worse n' for the same state dequeued and
 expanded first (disaster!)
- Take the highest such n in tree
- Let p be the ancestor of n that was on the queue when n' was popped
- f(p) < f(n) because of consistency
- f(n) < f(n') because n' is suboptimal
- p would have been expanded before n'
- Contradiction!

