Announcements CS 188: Artificial Intelligence

= Homework 1: Search

= Has been released! Due Tuesday, Sep 4th, at 11:59pm.
= Electronic component: on Gradescope, instant grading, submit as often as you like.

Informed Search

= Written component: exam-style template to be completed (we recommend on
paper) and to be submitted into Gradescope (graded on effort/completion)

= Project 1: Search
= Has been released! Due Friday, Sep 7', at 4pm.
= Start early and ask questions. It’s longer than most!

= Sections
= Started this week

* You can go to any, but have priority in your own Instructors: Pieter Abbeel & Dan Klein
= Section webcasts

University of California, Berkeley

Today Recap: Search

= Informed Search
® Heuristics
= Greedy Search
= A* Search

= Graph Search

Recap: Search

= Search problem:
= States (configurations of the world)
= Actions and costs
= Successor function (world dynamics)
= Start state and goal test

= Search tree:

= Nodes: represent plans for reaching states
= Plans have costs (sum of action costs)

= Search algorithm:
= Systematically builds a search tree
= Chooses an ordering of the fringe (unexplored nodes)
= Optimal: finds least-cost plans

Example: Pancake Problem

Example: Pancake Problem

Cost: Number of pancakes flipped

Example: Pancake Problem

BOUNDS FOR SORTING BY PREFIX REVERSAL

William H. GATES
Microsoft, Albuquerque, New Mexico

Christos H. PAPADIMITRIOU*t

Received 18 January 1978
Revised 28 August 1978

For a permutation o of the integers from 1 to n, let f(o) be the smallest number of prefix
reversals that will transform o to the identity permutation, and let f(n) be the largest such f(o)
for all o in (the symmetric group) S,,. We show that f(n)=(5n +5)/3, and that f(n)=17n/16 for
n a multiple of 16. If, furthermore, each integer is required to participate in an even number of
reversed prefixes, the corresponding function g(n) is shown to obey 3n/2—1=g(n)=2n+3.

Department of Electrical Engi) ing, University of California, Berkeley, CA 94720, U.S.A.

State space graph with costs as weights

General Tree Search

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

Action: flip top two

Path to reach goal:
Flip four, flip three
Total cost: 7

Uninformed Search

The One Queue

= All these search algorithms are the
same except for fringe strategies

= Conceptually, all fringes are priority
queues (i.e. collections of nodes with
attached priorities)

= Practically, for DFS and BFS, you can
avoid the log(n) overhead from an
actual priority queue, by using stacks
and queues

Can even code one implementation
that takes a variable queuing object

FEFFFLR

Uniform Cost Search

= Strategy: expand lowest path cost

= The good: UCS is complete and optimal!

= The bad:
= Explores options in every “direction”
= No information about goal location

Goal

[Demo: contours UCS empty (L3D1)]
[Demo: contours UCS pacman small maze (L3D3)]

Video of Demo Contours UCS Empty

Informed Search

Video of Demo Contours UCS Pacman Small Maze

NOPE. GoAL!

Search Heuristics

= A heuristic is:
= A function that estimates how close a state is to a goal
= Designed for a particular search problem

= Examples: Manhattan distance, Euclidean distance for
pathing

Nol GoALY

.

)
Heuriski-Tron

Example: Heuristic Function Example: Heuristic Function

Heuristic: the number of the largest pancake that is still out of place

(Straight-line distance "\

to Bucharest

Arad 366 3_—
Bucharest 0 I
Craiova 160 — / h(X)
Dobreta 242 4 —
Arad [Eforie 161
b 92 Fagaras 178
| . 99 Fagaras Giurgiu 77 —_—
118 Hirsova 151 e
asi 226 — S —— \
Lugoj 244 4 — — —
Mehadia 241 3 0 —=
Neamt 234 — _—
Oradea 380 / ™ —_—
" Pitesti 98
O Hirsova | pimmicu Vileea 103 [— 4= \
Sibiu 253 — —
Timisoara 320 4 — e 3 —=_
Urziceni 80 —_—
| Vaslui 199 $ R
. Eforie
A Giurgiu Zerind 374 4 ™

h(x)

Greedy Search Example: Heuristic Function

(Straight-line distance "\

to Bucharest
Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Arad] Eforie 161
“bie . 92 Fagaras 178
| . 99 Fagaras Giurgiu 77
118 a0 1 Vaslui Hll::u\‘a 151
Rimnicu Vilcea Ef;oj ;i:
Mehadia 241
Pitesti Neamt 234
Oradea 380
" Pitesti 98
Q Hirsova | Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Eforie | Vaslui 199
[Giurgiu Zerind 374

h(x)

Greedy Search Greedy Search

= Expand the node that seems closest... = Strategy: expand a node that you think is

closest to a goal state

= Heuristic: estimate of distance to nearest goal for
each state

© Arad

329

= A common case:
= Best-first takes you straight to the (wrong) goal

366 380 193

253 0

= Worst-case: like a badly-guided DFS

= What can go wrong?

[Demo: contours greedy empty (L3D1)]
[Demo: contours greedy pacman small maze (L3D4)]

Video of Demo Contours Greedy (Empty) Video of Demo Contours Greedy (Pacman Small Maze)

A* Search

Combining UCS and Greedy

A* Search

= Uniform-cost orders by path cost, or backward cost g(n)
= Greedy orders by goal proximity, or forward cost h(n)

= A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager

When should A* terminate?

= Should we stop when we enqueue a goal?

h=2

h=1

= No: only stop when we dequeue a goal

Is A* Optimal?

h=6

= What went wrong?
= Actual bad goal cost < estimated good goal cost
= We need estimates to be less than actual costs!

Idea: Admissibility

Admissible Heuristics

Heuristi - Tron @

Inadmissible (pessimistic) heuristics break
optimality by trapping good plans on the fringe

Admissible (optimistic) heuristics slow down
bad plans but never outweigh true costs

%ﬂ'*\‘\ vav!

<
e

Heuristi - Tron @

Admissible Heuristics

= A heuristic % is admissible (optimistic) if:
0 < h(n) < h*(n)

where h*(n) is the true cost to a nearest goal

o -

= Coming up with admissible heuristics is most of what’s involved
in using A* in practice.

4

Optimality of A* Tree Search Optimality of A* Tree Search

Assume:

= Ajisan optimal goal node

= Bis a suboptimal goal node
= his admissible

Claim:

= A will exit the fringe before B

Optimality of A* Tree Search: Blocking Optimality of A* Tree Search: Blocking

Proof: Proof:

= |magine B is on the fringe = |magine B is on the fringe

= Some ancestor n of Aiis on the
fringe, too (maybe Al)

= Some ancestor n of Aiis on the
fringe, too (maybe Al)

= Claim: n will be expanded before B = Claim: n will be expanded before B
1. f(n)is less or equal to f(A)

2. f(A)is less than f(B)

1. f(n)is less or equal to f(A)

f(n) < g(A) Admissibility of h f(A) < f(B) h=0atagoal

f(n) =g(n) +h(n) Definition of f-cost 9(A) < g(B) B is suboptimal }
g(A) = f(A) h =0 at a goal

Optimality of A* Tree Search: Blocking

Proof:
= |magine B is on the fringe
= Some ancestor n of A is on the
fringe, too (maybe Al)
= Claim: n will be expanded before B
1. f(n)is less or equal to f(A)
2. f(A)is less than f(B)

3. nexpands before B
= All ancestors of A expand before B
P f(n) < f(A) < f(B)
= A expands before B

= A* search is optimal

Properties of A*

Properties of A*

UCS vs A* Contours

Uniform-Cost A¥*

= Uniform-cost expands equally in all

“directions”
St Goal

= A* expands mainly toward the goal,

but does hedge its bets to ensure
Optima“ty Start Goal

[Demo: contours UCS / greedy / A* empty (L3D1)]
[Demo: contours A* pacman small maze (L3D5)]

Video of Demo Contours (Empty) -- UCS Video of Demo Contours (Empty) -- Greedy

Video of Demo Contours (Empty) — A* Video of Demo Contours (Pacman Small Maze) — A*

Comparison A* Applications

SCORE: 0

SCORE: 0

Greedy Uniform Cost A*

A* Applications Video of Demo Pacman (Tiny Maze) — UCS / A*

2 Pydes - Eipae oY
Fle [dt Neagste Search Projct fun Vimdow |elp

-0

o (B Byder | £° Team

Video games

Pathing / routing problems

Resource planning problems

LALLM LY

Robot motion planning

= Language analysis

Machine translation

2 Console % | aEF = 8-

Speech recognition

. * i
[Demo: UCS /A papman tiny maze (L3D6,L3D7)] ®JcmE F-‘ETW
[Demo: guess algorithm Empty Shallow/Deep (L3D8)]

Video of Demo Empty Water Shallow/Deep — Guess Algorithm Creating Heuristics

L T

gete Sewch Proect fan Vimdew elp

= (B Byder |7 Tear

LA AN,

You GOT

HEURISTILC
UPGRADE!

Creating Admissible Heuristics Example: 8 Puzzle

= Most of the work in solving hard search problems optimally is in coming up
with admissible heuristics

112
3|4 |

(67 |

Goal State

= Often, admissible heuristics are solutions to relaxed problems, where new
actions are available

Actions

Start State

= What are the states?
= How many states?

= What are the actions?
= How many successors from the start state?
= |nadmissible heuristics are often useful too = What should the costs be?

8 Puzzle |

= Heuristic: Number of tiles misplaced 7 E

= Why is it admissible?
h(start) =8

6

= This is a relaxed-problem heuristic s 3 1

12
% |5
6,78

Start State

Goal State

Average nodes expanded
when the optimal path has...

8 Puzzle Il

.4 steps |...8 steps |...12 steps
ucs 112 6,300 | 3.6x10°
TILES 13 39 227

Statistics from Andrew Moore

8 Puzzle Il

= How about using the actual cost as a heuristic?

= Would it be admissible?

= Would we save on nodes expanded?
= What's wrong with it? i, ’!

&

= With A*: a trade-off between quality of estimate and work per node

= As heuristics get closer to the true cost, you will expand fewer nodes but usually
do more work per node to compute the heuristic itself

What if we had an easier 8-puzzle where 7 E

any tile could slide any direction at any 5 6

time, ignoring other tiles?
831

6|7

12
% |5
-]

Total Manhattan distance
Start State

Why is it admissible?

Goal State

Average nodes expanded

h(start)= 3+1+2+..=18 when the optimal path has...
.4 steps | ...8 steps | ...12 steps
TILES 13 39 227

MANHATTAN 12

25

73

Semi-Lattice of Heuristics

Trivial Heuristics, Dominance

Graph Search

= Dominance: h, 2 h_ if exact
Vn @ ha(n) > he(n) I
= Heuristics form a semi-lattice: maz(ha, hb)
= Max of admissible heuristics is admissible /\
ha h
h(n) = maz(ha(n), hy(n)) | b
= Trivial heuristics h’c

= Bottom of lattice is the zero heuristic (what \
does this give us?)

. L ZEero
= Top of lattice is the exact heuristic

Tree Search: Extra Work!

Graph Search

= Failure to detect repeated states can cause exponentially more work.

= |n BFS, for example, we shouldn’t bother expanding the circled nodes (why?)
/ State Graph \ / Search Tree \ .
A
d e P
N [
B b/m h r q
\ o
h f
c ! ®/\ \r @@/\
p g f q c 6
I PN !
D q f G a
_ J ,,

Graph Search A* Graph Search Gone Wrong?

= |dea: never expand a state twice State space graph Search tree

= How to implement:

S (0+2)

= Tree search + set of expanded states (“closed set”)

= Expand the search tree node-by-node, but... /\

= Before expanding a node, check to make sure its state has never been A (1+4) B (1+1)

expanded before l
= |f not new, skip it, if new add to closed set
C (2+1) C (3+1)

= |mportant: store the closed set as a set, not a list l l
= Can graph search wreck completeness? Why/why not? G (5+0) G (6+0)

= How about optimality? h=0

Consistency of Heuristics Optimality of A* Graph Search

= Main idea: estimated heuristic costs < actual costs
= Admissibility: heuristic cost < actual cost to goal
h(A) < actual cost from A to G
= Consistency: heuristic “arc” cost < actual cost for each arc

h(A) —h(C) < cost(A to C)

= Consequences of consistency:

= The f value along a path never decreases

h(A) < cost(A to C) + h(C)

= A* graph search is optimal

Optimality of A* Graph Search

Optimality

= Sketch: consider what A* does with a
consistent heuristic:

= Fact 1: In tree search, A* expands nodes in
increasing total f value (f-contours)

= Fact 2: For every state s, nodes that reach
s optimally are expanded before nodes
that reach s suboptimally

= Result: A* graph search is optimal

A*: Summary

= Tree search:
= A*is optimal if heuristic is admissible
= UCS is a special case (h=0)

= Graph search:
= A* optimal if heuristic is consistent
= UCS optimal (h = 0 is consistent)

= Consistency implies admissibility

= |n general, most natural admissible heuristics
tend to be consistent, especially if from
relaxed problems

A*: Summary

it

= A* uses both backward costs and (estimates of) forward costs
= A*is optimal with admissible / consistent heuristics

= Heuristic design is key: often use relaxed problems

Tree Search Pseudo-Code

Graph Search Pseudo-Code

function TREE-SEARCH(problem, fringe) return a solution, or failure

fringe < INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do

if fringe is empty then return failure

node <~ REMOVE-FRONT(fringe)

if GOAL-TEST(problem, STATE[node]) then return node

for child-node in EXPAND(STATE([node], problem) do

fringe < INSERT(child-node, fringe)

end

end

Optimality of A* Graph Search

function GRAPH-SEARCH(problem, fringe) return a solution, or failure
closed < an empty set
fringe < INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node <~ REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node]) then return node

if STATE[node] is not in closed then

end

add STATE[node] to closed
for child-node in EXPAND(STATE[node], problem) do

fringe < INSERT(child-node, fringe)

end

Optimality of A* Graph Search

Consider what A* does:
= Expands nodes in increasing total f value (f-contours)
Reminder: f(n) = g(n) + h(n) = cost to n + heuristic
= Proof idea: the optimal goal(s) have the lowest f value, so
it must get expanded first

There’s a problem with this
argument. What are we assuming
is true?

Proof:

New possible problem: some n on path to G*
isn’t in queue when we need it, because some
worse n’ for the same state dequeued and
expanded first (disaster!)

Take the highest such n in tree G*
Let p be the ancestor of n that was on the
queue when n’ was popped

f(p) < f(n) because of consistency

f(n) < f(n’) because n’ is suboptimal

p would have been expanded before n’

Contradiction!

