Announcements

- **Homework 1: Search**
 - Has been released! Due Tuesday, Sep 4th, at 11:59pm.
 - Electronic component: on Gradescope, instant grading, submit as often as you like.
 - Written component: exam-style template to be completed (we recommend on paper) and to be submitted into Gradescope (graded on effort/completion)

- **Project 1: Search**
 - Has been released! Due Friday, Sep 7th, at 4pm.
 - Start early and ask questions. It’s longer than most!

- **Sections**
 - Started this week
 - You can go to any, but have priority in your own
 - Section webcasts

CS 188: Artificial Intelligence

Informed Search

Instructors: Pieter Abbeel & Dan Klein
University of California, Berkeley

Today

- **Informed Search**
 - Heuristics
 - Greedy Search
 - A* Search

- **Graph Search**

Recap: Search

- **Search problem:**
 - States (configurations of the world)
 - Actions and costs
 - Successor function (world dynamics)
 - Start state and goal test

- **Search tree:**
 - Nodes: represent plans for reaching states
 - Plans have costs (sum of action costs)

- **Search algorithm:**
 - Systematically builds a search tree
 - Chooses an ordering of the fringe (unexplored nodes)
 - Optimal: finds least-cost plans

Example: Pancake Problem

Cost: Number of pancakes flipped
Example: Pancake Problem

The One Queue

- All these search algorithms are the same except for fringe strategies
 - Conceptually, all fringes are priority queues (i.e., collections of nodes with attached priorities)
 - Practically, for DFS and BFS, you can avoid the log(n) overhead from an actual priority queue, by using stacks and queues
 - Can even code one implementation that takes a variable queuing object

Uniform Cost Search

- Strategy: expand lowest path cost

The good: UCS is complete and optimal!

The bad:
- Explores options in every "direction"
- No information about goal location
Informed Search

Search Heuristics

- A heuristic is:
 - A function that estimates how close a state is to a goal
 - Designed for a particular search problem
 - Examples: Manhattan distance, Euclidean distance for pathing

Example: Heuristic Function

Heuristic: the number of the largest pancake that is still out of place
Greedy Search

- Expand the node that seems closest...

- What can go wrong?

Example: Heuristic Function

$h(x)$

Strategy: expand a node that you think is closest to a goal state
- Heuristic: estimate of distance to nearest goal for each state

A common case:
- Best-first takes you straight to the (wrong) goal

Worst-case: like a badly-guided DFS

Video of Demo Contours Greedy (Empty)

Video of Demo Contours Greedy (Pacman Small Maze)
A* Search

- **Uniform-cost** orders by path cost, or backward cost $g(n)$
- **Greedy** orders by goal proximity, or forward cost $h(n)$
- **A* Search** orders by the sum: $f(n) = g(n) + h(n)$

Combining UCS and Greedy

- Uniform-cost orders by path cost, or backward cost $g(n)$
- Greedy orders by goal proximity, or forward cost $h(n)$
- A* Search orders by the sum: $f(n) = g(n) + h(n)$

When should A* terminate?

- Should we stop when we enqueue a goal?
- No: only stop when we dequeue a goal

Is A* Optimal?

- What went wrong?
- Actual bad goal cost < estimated good goal cost
- We need estimates to be less than actual costs!

Admissible Heuristics
Idea: Admissibility

Inadmissible (pessimistic) heuristics break optimality by trapping good plans on the fringe.
Admissible (optimistic) heuristics slow down bad plans but never outweigh true costs.

Admissible Heuristics

A heuristic h is **admissible** (optimistic) if:

$$0 \leq h(n) \leq h^*(n)$$

where $h^*(n)$ is the true cost to a nearest goal.

Examples:

Coming up with admissible heuristics is most of what’s involved in using A* in practice.

Optimality of A* Tree Search

Assume:
- A is an optimal goal node
- B is a suboptimal goal node
- h is admissible

Claim:
- A will exit the fringe before B

Proof:
1. $f(n)$ is less or equal to $f(A)$
2. $f(A)$ is less than $f(B)$

Optimality of A* Tree Search: Blocking

Proof:
1. Imagine B is on the fringe
2. Some ancestor n of A is on the fringe, too (maybe A!)
3. Claim: n will be expanded before B
 1. $f(n)$ is less or equal to $f(A)$
 2. $f(A)$ is less than $f(B)$

B is suboptimal $h = 0$ at a goal
Optimality of A* Tree Search: Blocking

Proof:
- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A itself)
- Claim: n will be expanded before B

1. \(f(n) \) is less or equal to \(f(A) \)
2. \(f(A) \) is less than \(f(B) \)
3. n expands before B

- All ancestors of A expand before B
- A expands before B
- A* search is optimal

Properties of A*

- Uniform-cost expands equally in all "directions"
- A* expands mainly toward the goal, but does hedge its bets to ensure optimality

UCS vs A* Contours

Video of Demo Contours (Empty) -- UCS

Video of Demo Contours (Empty) -- Greedy
Comparison

- Greedy
- Uniform Cost
- A*

A* Applications

- Video games
- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition
- ...

Video of Demo Pacman (Tiny Maze) – UCS / A*

A* Applications

[Demo: UCS / A* pacman tiny maze (L3D6,L3D7)]
[Demo: guess algorithm Empty Shallow/Deep (L3D8)]
Creating Admissible Heuristics

- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics.
- Often, admissible heuristics are solutions to relaxed problems, where new actions are available.
- Inadmissible heuristics are often useful too.

Example: 8 Puzzle

- What are the states?
- How many states?
- What are the actions?
- How many successors from the start state?
- What should the costs be?

8 Puzzle I

- Heuristic: Number of tiles misplaced
- Why is it admissible?
- \(h(\text{start}) = 8 \)
- This is a relaxed-problem heuristic.

Average nodes expanded when the optimal path has:

<table>
<thead>
<tr>
<th>(.4 \text{ steps})</th>
<th>(.8 \text{ steps})</th>
<th>(.12 \text{ steps})</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS</td>
<td>112</td>
<td>6,300</td>
</tr>
<tr>
<td>TILES</td>
<td>13</td>
<td>39</td>
</tr>
</tbody>
</table>

Statistics from Andrew Moore.

8 Puzzle II

- What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?
- Total Manhattan distance
- Why is it admissible?
- \(h(\text{start}) = 3 + 1 + 2 + ... = 18 \)

Average nodes expanded when the optimal path has:

<table>
<thead>
<tr>
<th>(.4 \text{ steps})</th>
<th>(.8 \text{ steps})</th>
<th>(.12 \text{ steps})</th>
</tr>
</thead>
<tbody>
<tr>
<td>TILES</td>
<td>13</td>
<td>39</td>
</tr>
<tr>
<td>MANHATTAN</td>
<td>12</td>
<td>25</td>
</tr>
</tbody>
</table>
8 Puzzle III

- How about using the actual cost as a heuristic?
 - Would it be admissible?
 - Would we save on nodes expanded?
 - What's wrong with it?

- With A*: a trade-off between quality of estimate and work per node
 - As heuristics get closer to the true cost, you will expand fewer nodes but usually do more work per node to compute the heuristic itself

Semi-Lattice of Heuristics

- Dominance: $h_a \geq h_b$ if
 $$\forall n : h_a(n) \geq h_b(n)$$
- Heuristics form a semi-lattice:
 - Max of admissible heuristics is admissible
 $$h(n) = \max(h_a(n), h_b(n))$$
- Trivial heuristics
 - Bottom of lattice is the zero heuristic (what does this give us?)
 - Top of lattice is the exact heuristic

Graph Search

- Failure to detect repeated states can cause exponentially more work.

- In BFS, for example, we shouldn't bother expanding the circled nodes (why?)

Trivial Heuristics, Dominance

- Exact
 - Max of admissible heuristics is admissible
 $$h(n) = \max(h_a(n), h_b(n))$$
- Trivial heuristics
 - Bottom of lattice is the zero heuristic (what does this give us?)
 - Top of lattice is the exact heuristic

Graph Search

- In BFS, for example, we shouldn't bother expanding the circled nodes (why?)

Tree Search: Extra Work!

- Failure to detect repeated states can cause exponentially more work.
Graph Search

- Idea: never expand a state twice
- How to implement:
 - Tree search + set of expanded states ("closed set")
 - Expand the search tree node-by-node, but...
 - Before expanding a node, check to make sure its state has never been expanded before
 - If not new, skip it, if new add to closed set
- Important: store the closed set as a set, not a list
- Can graph search wreck completeness? Why/why not?
- How about optimality?

A* Graph Search Gone Wrong?

- State space graph
- Search tree

Consistency of Heuristics

- Main idea: estimated heuristic costs ≤ actual costs
 - Admissibility: heuristic cost ≤ actual cost to goal
 \[h(s) \leq \text{actual cost from } s \text{ to goal} \]
 - Consistency: heuristic "arc" cost ≤ actual cost for each arc
 \[h(A) - h(C) \leq \text{cost}(A \text{ to } C) \]

- Consequences of consistency:
 - The f value along a path never decreases
 \[h(A) \leq \text{cost}(A \text{ to } C) + h(C) \]
 - A* graph search is optimal

Optimality of A* Graph Search

- Sketch: consider what A* does with a consistent heuristic:
 - Fact 1: In tree search, A* expands nodes in increasing total f value (f-contours)
 - Fact 2: For every state s, nodes that reach s optimally are expanded before nodes that reach s suboptimally
 - Result: A* graph search is optimal

Optimality

- Tree search:
 - A* is optimal if heuristic is admissible
 - UCS is a special case (h = 0)
- Graph search:
 - A* optimal if heuristic is consistent
 - UCS optimal (h = 0 is consistent)
- Consistency implies admissibility
- In general, most natural admissible heuristics tend to be consistent, especially if from relaxed problems
A*: Summary

- A* uses both backward costs and (estimates of) forward costs
- A* is optimal with admissible / consistent heuristics
- Heuristic design is key: often use relaxed problems

Optimality of A* Graph Search

- Consider what A* does:
 - Expands nodes in increasing total f value (f-contours)
 - Reminder: \(f(n) = g(n) + h(n) = \text{cost to } n + \text{heuristic} \)
 - Proof idea: the optimal goal(s) have the lowest f value, so it must get expanded first

There's a problem with this argument. What are we assuming is true?

Tree Search Pseudo-Code

```plaintext
function TREE-SEARCH(problem, fringe) return a solution, or failure
    fringe ← Insert(make-node(initial-state(problem)), fringe)
    loop do
        if fringe is empty then return failure
        node ← Remove-Front(fringe)
        if Goal-Test(problem, state(node)) then return node
        for child-node in Expand(state(node), problem) do
            fringe ← Insert(child-node, fringe)
        end
    end
end
```

Graph Search Pseudo-Code

```plaintext
function GRAPH-SEARCH(problem, fringe) return a solution, or failure
    fringe ← Insert(make-node(initial-state(problem)), fringe)
    loop do
        if fringe is empty then return failure
        node ← Remove-Front(fringe)
        if Goal-Test(problem, state(node)) then return node
        if state(node) is not in closed then
            add state(node) to closed
            for child-node in Expand(state(node), problem) do
                fringe ← Insert(child-node, fringe)
            end
        end
    end
end
```

Optimality of A* Graph Search

Proof:
- New possible problem: some \(n \) on path to \(G^* \) isn't in queue when we need it, because some worse \(n' \) for the same state dequeued and expanded first (disaster!)
- Take the highest such \(n \) in tree
- Let \(p \) be the ancestor of \(n \) that was on the queue when \(n' \) was popped
- \(f(p) < f(n') \) because of consistency
- \(f(n) < f(n') \) because \(n \) is suboptimal
- \(p \) would have been expanded before \(n' \)
- Contradiction!