Announcements

= Homework 1: Search
= Has been released! Due Tuesday, Sep 4th, at 11:59pm.

= Electronic component: on Gradescope, instant grading, submit as often as you like.

= Written : exam-style to be (wer
paper) and to be submitted into Gradescope (graded on effort/completion)

= Project 1: Search
= Has been released! Due Friday, Sep 7th, at 4pm.
= Start early and ask questions. It's longer than most!

= Sections
= Started this week
= You can go to any, but have priority in your own
= Section webcasts

Today

on

CS 188: Artificial Intelligence

Informed Search

Instructors: Pieter Abbeel & Dan Klein

University of California, Berkeley

Recap: Search

= Informed Search
= Heuristics
= Greedy Search
= A* Search

= Graph Search

Recap: Search

Example: Pancake Problem

= Search problem:
= States (configurations of the world)
= Actions and costs
= Successor function (world dynamics)
= Start state and goal test

= Search tree:
= Nodes: represent plans for reaching states
= Plans have costs (sum of action costs)

= Search algorithm:
= Systematically builds a search tree
= Chooses an ordering of the fringe (unexplored nodes)
= Optimal: finds least-cost plans

Cost: Number of pancakes flipped

Example: Pancake Problem Example: Pancake Problem

State space graph with costs as weights

BOUNDS FOR SORTING BY PREFIX REVERSAL

William H. GATES
Microsoft, Albuquerque, New Mexico

Christos H. PAPADIMITRIOU*t
Department of Electrical Engineering, University of California, Berkeley, CA 94720, U.S.A.

Received 18 January 1978
Revised 28 August 1978

For a permutation o of the integers from 1 to n, let f(or) be the smallest number of prefix
reversals that will transform o to the identity permutation, and let f(n) be the largest such f(o)
for all o in (the symmetric group) S,. We show that f(n)<(Sn +5)/3, and that f(n)=17n/16 for
n a multiple of 16. If, furthermore, each integer is required to participate in an even number of
reversed prefixes, the corresponding function g(n) is shown to obey 3n/2—1=g(n)=2n+3.

General Tree Search The One Queue
function TREE-SEARCH(problem, strategy) returns a solution, or failure = All these search algorithms are the
initialize the search tree using the initial state of problem N .
loop do same except for fringe strategies
if there are no candidates for expansion then return failure . P
choose a leaf node for expansion according to strategy = Conceptually, all fringes are priority
if the node contains a goal state then return the corresponding solution queues (i.e. collections of nodes with
else expand the node and add the resulting nodes to the search tree attached priorities)

end

e = Practically, for DFS and BFS, you can
Path to reach goal: .
Flip four, lip three avoid the' Io'g(n) overhead fl"om an
Total cost: 7 actual priority queue, by using stacks
and queues

= Can even code one implementation
that takes a variable queuing object

Action: flip top two

Uninformed Search Uniform Cost Search

= Strategy: expand lowest path cost

= The good: UCS is complete and optimal!

= The bad:
= Explores options in every “direction” Goal

= No information about goal location

[Demo: contours UCS empty (L3D1)]
[Demo: contours UCS pacman small maze (L3D3)]

Video of Demo Contours UCS Empty Video of Demo Contours UCS Pacman Small Maze

Informed Search Search Heuristics

= A heuristic is:
= A function that estimates how close a state is to a goal
= Designed for a particular search problem

= Examples: Manhattan distance, Euclidean distance for
pathing

NOPE. GoAL!

Example: Heuristic Function Example: Heuristic Function

Heuristic: the number of the largest pancake that is still out of place

Bucharest o 3

crbm s = h(x)
" g 3=~

Mehadia

75
Dobreta (120

Greedy Search

Example: Heuristic Function

Greedy Search

= Expand the node that seems closest...

Arad

Sbiu

329

366 380 193

253 o

= What can go wrong?

Video of Demo Contours Greedy (Empty)

(straight-line distance

to Bucharest
Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
Fagaras 178
Giurgiu 77
Hirsova 151
Tasi 226
i 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 98
Rimnicu Vileea 193
biu
Timisoara 329
Urziceni 80
Vaslui 199
d Giurgiu Zerind 374
h(x)

Greedy Search

= Strategy: expand a node that you think is
closest to a goal state

= Heuristic: estimate of distance to nearest goal for
each state

= A common case:
= Best-first takes you straight to the (wrong) goal

= Worst-case: like a badly-guided DFS

[Demo: contours greedy empty (L3D1)]
[Demo: contours greedy pacman small maze (L3D4)]

Video of Demo Contours Greedy (Pacman Small Maze)

A* Search A* Search

Combining UCS and Greedy

When should A* terminate?

= Uniform-cost orders by path cost, or backward cost g(n) = Should we stop when we engueue a £0al?
= Greedy orders by goal proximity, or forward cost h(n) P a g)

= No: only stop when we dequeue a goal
= A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager

Is A* Optimal? Admissible Heuristics

h=6

>
= What went wrong? ;

Heuristi - Tron @
= Actual bad goal cost < estimated good goal cost
= We need estimates to be less than actual costs!

Idea: Admissibility Admissible Heuristics

= A heuristic 4 is admissible (optimistic) if:
0 < h(n) < h*(n)

where h*(n) is the true cost to a nearest goal

o -
4 s

Inadmissible (pessimistic) heuristics break Admissible (optimistic) heuristics slow down . . L. o X
optimality by trapping good plans on the fringe bad plans but never outweigh true costs = Coming up with admissible heuristics is most of what’s involved
in using A* in practice.
Optimality of A* Tree Search Optimality of A* Tree Search

Assume:

= Alis an optimal goal node

= Bis a suboptimal goal node
= hisadmissible

Claim: B
= A will exit the fringe before B
Optimality of A* Tree Search: Blocking Optimality of A* Tree Search: Blocking

Proof: Proof:
= Imagine B is on the fringe
= Some ancestor n of A is on the

fringe, too (maybe Al)

= Imagine B is on the fringe
= Some ancestor n of A is on the
fringe, too (maybe Al)

= Claim: n will be expanded before B = Claim: n will be expanded before B

1. f(n)isless or equal to f(A) 1. f(n)isless or equal to f(A)

2. f(A)is less than f(B)

f(n) = g(n) + h(n) Definition of f-cost 9(A) < g(B) B is suboptimal
f(n) < g(A) Admissibility of h F(A) < f(B) h = 0 at a goal
g(A) = f(A) h=0atagoal

Optimality of A* Tree Search: Blocking

Proof:

Imagine B is on the fringe

Some ancestor n of A is on the
fringe, too (maybe Al)

Claim: n will be expanded before B

1. f(n)isless or equal to f(A)
2. f(A)is less than f(B)

3. nexpands before B
All ancestors of A expand before B F(n) < F(A) < F(B)
A expands before B

A* search is optimal

Properties of A*

Properties of A*

UCS vs A* Contours

Uniform-Cost A*

Video of Demo Contours (Empty) -- UCS

= Uniform-cost expands equally in all

“directions” @
St Goal

= A* expands mainly toward the goal,

but does hedge its bets to ensure
optimality Start Goal

[Demo: contours UCS / greedy / A* empty (L3D1)]
[Demo: contours A* pacman small maze (L3D5)]

Video of Demo Contours (Empty) -- Greedy

Video of Demo Contours (Empty) — A*

Video of Demo Contours (Pacman Small Maze) — A*

Comparison

A* Applications

SCORE: 0

Greedy Uniform Cost A*

A* Applications

Video of Demo Pacman (Tiny Maze) — UCS / A*

= Video games

= Pathing / routing problems
= Resource planning problems
= Robot motion planning

= Language analysis

= Machine translation

= Speech recognition

[Demo: UCS / A* pacman tiny maze (L3D6,L3D7)]
[Demo: guess algorithm Empty Shallow/Deep (L3D8)]

3 e (o
[T

2Jcmm "¢ WEIERS

Video of Demo Empty Water Shallow/Deep — Guess Algorithm Creating Heuristics

vou GOT

HEURISTIC
UPGRADE!

Creating Admissible Heuristics Example: 8 Puzzle

Most of the work in solving hard search problems optimally is in coming up Eﬂ
with admissible heuristics 7 3 7 1 1 2
5 6] W 2/4[5 3 4|5

Often, admissible heuristics are solutions to relaxed problems, where new 8 3 1 “ 8 6 6l7

actions are available

Start State Actions Goal State

What are the states?
How many states?

What are the actions?

How many successors from the start state?
What should the costs be?

Inadmissible heuristics are often useful too

8 Puzzle | 8 Puzzle Il

Heuristic: Number of tiles misplaced 7 2 4 1

Why is it admissible? 2 What if we had an easier 8-puzzle where 7 2 + 1 2
y is it admissibler il Id slid directi

h(start) =8 SEN6| |3 45 e, ignoringoterdies o IS 6] |34 |5
This is a relaxed-problem heuristic 8 3 1 6 7 s 8 3 1 6 7 5

Total Manhattan distance

Start State Goal State Start State Goal State
= Why is it admissible?
Average node‘s expanded Average nodes expanded
leniheloptmalipailia ¥ = h(start)= 3+1+2+..=18 when the optimal path has...
.4 steps | ...8 steps | ...12 steps .4 steps | ...8 steps |...12 steps
ucs 112 6,300 | 3.6x10° TILES 13 39 227
— TILES 22 2 MANHATTAN | 12 25 73

Statistics from Andrew Moore

8 Puzzle Il

= How about using the actual cost as a heuristic?
= Would it be admissible?

= Would we save on nodes expanded?

= What’s wrong with it? ‘

= With A*: a trade-off between quality of estimate and work per node

= As heuristics get closer to the true cost, you will expand fewer nodes but usually
do more work per node to compute the heuristic itself

Semi-Lattice of Heuristics

Trivial Heuristics, Dominance

Graph Search
= Dominance: h, 2 h_if exact
Vn : ha(n) > he(n) |
max(ha, h
= Heuristics form a semi-lattice: (- b)
* Max of admissible heuristics is admissible /\
ha h
h(n) = maz(ha(n), hy(n)) | b
= Trivial heuristics he
= Bottom of lattice is the zero heuristic (what \
does this give us?) zero
= Top of lattice is the exact heuristic

Tree Search: Extra Work!

Graph Search

= Failure to detect repeated states can cause exponentially more work.

= |n BFS, for example, we shouldn’t bother expanding the circled nodes (why?)
State Graph Search Tree

Q

>\4\

@/h\ 6@

@

o -
>\4ﬁ
@

Q-a

Qa-n

Graph Search A* Graph Search Gone Wrong?

= |dea: never expand a state twice State space graph Search tree

= How to implement:

S (0+2)
= Tree search + set of expanded states (“closed set”)
= Expand the search tree node-by-node, but...
= Before expanding a node, check to make sure its state has never been A(1+4) B (1+1)
expanded before l l
= If not new, skip it, if new add to closed set
C(2+1) C(3+1)
= |mportant: store the closed set as a set, not a list l l
= Can graph search wreck completeness? Why/why not? G (5+0) G (6+0)

= How about optimality?

Consistency of Heuristics Optimality of A* Graph Search

= Main idea: estimated heuristic costs < actual costs
= Admissibility: heuristic cost < actual cost to goal
h(A) < actual cost from Ato G
= Consistency: heuristic “arc” cost < actual cost for each arc

h(A) = h(C) < cost(A to C)

= Consequences of consistency:

= The f value along a path never decreases

h(A) < cost(A to C) + h(C)

= A* graph search is optimal

Optimality of A* Graph Search Optimality

= Tree search:
= Sketch: consider what A* does with a = A*is optimal if heuristic is admissible

consistent heuristic: * UCSis a special case (h = 0)
= Graph search:

= A* optimal if heuristic is consistent
= UCS optimal (h = 0 is consistent)

Fact 1: In tree search, A* expands nodes in
increasing total f value (f-contours)

Fact 2: For every state s, nodes that reach
s optimally are expanded before nodes
that reach s suboptimally

Consistency implies admissibility

= |n general, most natural admissible heuristics Ry

Result: A* graph search is optimal relaxed problems

tend to be consistent, especially if from ————

A*: Summary

A*: Summary

Tree Search Pseudo-Code

= A* uses both backward costs and (estimates of) forward costs

= A*is optimal with admissible / consistent heuristics

= Heuristic design is key: often use relaxed problems

Graph Search Pseudo-Code

function T'r SEARCH(problem, fringe) return a solution, or failure
fringe < INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node < REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node]) then return node

for child-node in EXPAND(STATE[node], problem) do
fringe < INSERT(child-node, fringe)

function GRAPH-SEARCH(problem, fringe) return a solution, or failure
closed < an empty se
fringe + INSERT(MAKE-NODE(INITIAL-STATE([problem]), fringe)
loop do
if fringe is empty then return failure

node - REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node|) then return node
if STATE[node| is not in closed then

add STATE[node] to closed

end for child-node in EXPAND(STATE[node|, problem) do
end fringe < INSERT(child-node, fringe)
end
end
Optimality of A* Graph Search Optimality of A* Graph Search
H * . Proof: 2
= Consider what A* does: ; P
Lo . = New possible problem: some n on path to G* ©)
= Expands nodes in increasing total f value (f-contours) isn’t in queue when we need it, because some n o
Reminder: f(n) = g(n) + h(n) = cost to n + heuristic worse n’ for the same state dequeued and
= Proof idea: the optimal goal(s) have the lowest f value, so expanded first (disaster!)
it must get expanded first = Take the highest such nin tree G* e
= Let p be the ancestor of n that was on the Q

There’s a problem with this
argument. What are we assuming
is true?

queue when n” was popped

f(p) < f(n) because of consistency

f(n) < f(n’) because n’is suboptimal

p would have been expanded before n’

Contradiction!

