CS 188: Artificial Intelligence

Constraint Satisfaction Problems

Dan Klein, Pieter Abbeel

University of California, Berkeley
What is Search For?

- Assumptions about the world: a single agent, deterministic actions, fully observed state, discrete state space

- Planning: sequences of actions
 - The path to the goal is the important thing
 - Paths have various costs, depths
 - Heuristics give problem-specific guidance

- Identification: assignments to variables
 - The goal itself is important, not the path
 - All paths at the same depth (for some formulations)
 - CSPs are a specialized class of identification problems
Constraint Satisfaction Problems
Constraint Satisfaction Problems

- Standard search problems:
 - State is a “black box”: arbitrary data structure
 - Goal test can be any function over states
 - Successor function can also be anything

- Constraint satisfaction problems (CSPs):
 - A special subset of search problems
 - State is defined by variables X_i with values from a domain D (sometimes D depends on i)
 - Goal test is a set of constraints specifying allowable combinations of values for subsets of variables

- Simple example of a formal representation language

- Allows useful general-purpose algorithms with more power than standard search algorithms
CSP Examples

- Western Australia
- Northern Territory
- Queensland
- South Australia
- New South Wales
- Victoria
- Tasmania
Example: Map Coloring

- **Variables:** WA, NT, Q, NSW, V, SA, T
- **Domains:** \(D = \{\text{red, green, blue}\} \)
- **Constraints:** adjacent regions must have different colors
 - Implicit: \(\text{WA} \neq \text{NT} \)
 - Explicit: \((\text{WA}, \text{NT}) \in \{ (\text{red, green}), (\text{red, blue}), \ldots \} \)
- **Solutions** are assignments satisfying all constraints, e.g.:

\[
\{\text{WA}=\text{red}, \text{NT}=\text{green}, \text{Q}=\text{red}, \text{NSW}=\text{green}, \\
\text{V}=\text{red}, \text{SA}=\text{blue}, \text{T}=\text{green}\}
\]
Example: N-Queens

Formulation 1:

- Variables: X_{ij}
- Domains: \{0, 1\}
- Constraints

\[
\forall i, j, k \ (X_{ij}, X_{ik}) \in \{(0, 0), (0, 1), (1, 0)\}
\]
\[
\forall i, j, k \ (X_{ij}, X_{kj}) \in \{(0, 0), (0, 1), (1, 0)\}
\]
\[
\forall i, j, k \ (X_{ij}, X_{i+k,j+k}) \in \{(0, 0), (0, 1), (1, 0)\}
\]
\[
\forall i, j, k \ (X_{ij}, X_{i+k,j-k}) \in \{(0, 0), (0, 1), (1, 0)\}
\]
\[
\sum_{i,j} X_{ij} = N
\]
Example: N-Queens

- **Formulation 2:**
 - **Variables:** Q_k
 - **Domains:** $\{1, 2, 3, \ldots N\}$
 - **Constraints:**
 - **Implicit:** $\forall i, j \text{ non-threatening}(Q_i, Q_j)$
 - **Explicit:** $(Q_1, Q_2) \in \{(1, 3), (1, 4), \ldots\}$
 . . .
Constraint Graphs
Constraint Graphs

- Binary CSP: each constraint relates (at most) two variables

- Binary constraint graph: nodes are variables, arcs show constraints

- General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!

[Demo: CSP applet (made available by aispace.org) -- n-queens]
Example: Cryptarithmetic

- **Variables:**

 \[F \ T \ U \ W \ R \ O \ X_1 \ X_2 \ X_3 \]

- **Domains:**

 \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}

- **Constraints:**

 \[\text{alldiff}(F, T, U, W, R, O) \]

 \[O + O = R + 10 \cdot X_1 \]

 \[\ldots \]
Example: Sudoku

- **Variables:**
 - Each (open) square

- **Domains:**
 - \{1,2,...,9\}

- **Constraints:**
 - 9-way alldiff for each column
 - 9-way alldiff for each row
 - 9-way alldiff for each region
 - (or can have a bunch of pairwise inequality constraints)
Example: The Waltz Algorithm

- The Waltz algorithm is for interpreting line drawings of solid polyhedra as 3D objects
- An early example of an AI computation posed as a CSP

Approach:
- Each intersection is a variable
- Adjacent intersections impose constraints on each other
- Solutions are physically realizable 3D interpretations
Varieties of CSPs and Constraints
Varieties of CSPs

- **Discrete Variables**
 - Finite domains
 - Size d means $O(d^n)$ complete assignments
 - E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)
 - Infinite domains (integers, strings, etc.)
 - E.g., job scheduling, variables are start/end times for each job
 - Linear constraints solvable, nonlinear undecidable

- **Continuous variables**
 - E.g., start/end times for Hubble Telescope observations
 - Linear constraints solvable in polynomial time by LP methods (see cs170 for a bit of this theory)
Varieties of Constraints

- **Varieties of Constraints**
 - Unary constraints involve a single variable (equivalent to reducing domains), e.g.:
 \[SA \neq \text{green} \]
 - Binary constraints involve pairs of variables, e.g.:
 \[SA \neq WA \]
 - Higher-order constraints involve 3 or more variables: e.g., cryptarithmetic column constraints

- **Preferences (soft constraints):**
 - E.g., red is better than green
 - Often representable by a cost for each variable assignment
 - Gives constrained optimization problems
 - (We’ll ignore these until we get to Bayes’ nets)
Real-World CSPs

- Scheduling problems: e.g., when can we all meet?
- Timetabling problems: e.g., which class is offered when and where?
- Assignment problems: e.g., who teaches what class
- Hardware configuration
- Transportation scheduling
- Factory scheduling
- Circuit layout
- Fault diagnosis
- ... lots more!

- Many real-world problems involve real-valued variables...
Solving CSPs
Standard Search Formulation

- Standard search formulation of CSPs

- States defined by the values assigned so far (partial assignments)
 - Initial state: the empty assignment, {}
 - Successor function: assign a value to an unassigned variable
 - Goal test: the current assignment is complete and satisfies all constraints

- We’ll start with the straightforward, naïve approach, then improve it
Search Methods

- What would BFS do?
- What would DFS do?
- What problems does naïve search have?
Backtracking Search
Backtracking Search

- Backtracking search is the basic uninformed algorithm for solving CSPs

- **Idea 1: One variable at a time**
 - Variable assignments are commutative, so fix ordering
 - I.e., [WA = red then NT = green] same as [NT = green then WA = red]
 - Only need to consider assignments to a single variable at each step

- **Idea 2: Check constraints as you go**
 - I.e. consider only values which do not conflict with previous assignments
 - Might have to do some computation to check the constraints
 - “Incremental goal test”

- Depth-first search with these two improvements is called *backtracking search* (not the best name)

- Can solve n-queens for $n \approx 25$
Backtracking Example
Backtracking Search

function BACKTRACKING-SEARCH(csp) returns solution/failure
 return RECURSIVE-BACKTRACKING({ }, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns soln/failure
 if assignment is complete then return assignment
 var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp], assignment, csp)
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
 if value is consistent with assignment given CONSTRAINTS[csp] then
 add {var = value} to assignment
 result ← RECURSIVE-BACKTRACKING(assignment, csp)
 if result ≠ failure then return result
 remove {var = value} from assignment
 return failure

- Backtracking = DFS + variable-ordering + fail-on-violation
- What are the choice points?
Improving Backtracking

- General-purpose ideas give huge gains in speed

- Ordering:
 - Which variable should be assigned next?
 - In what order should its values be tried?

- Filtering: Can we detect inevitable failure early?

- Structure: Can we exploit the problem structure?
Filtering
Filtering: Keep track of domains for unassigned variables and cross off bad options
Forward checking: Cross off values that violate a constraint when added to the existing assignment
Filtering: Constraint Propagation

- Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

- NT and SA cannot both be blue!
- Why didn’t we detect this yet?
- Constraint propagation: reason from constraint to constraint
Consistency of A Single Arc

- An arc $X \rightarrow Y$ is consistent iff for every x in the tail there is some y in the head which could be assigned without violating a constraint.

- Forward checking: Enforcing consistency of arcs pointing to each new assignment.

Delete from the tail!
A simple form of propagation makes sure all arcs are consistent:

- Important: If X loses a value, neighbors of X need to be rechecked!
- Arc consistency detects failure earlier than forward checking
- Can be run as a preprocessor or after each assignment
- What’s the downside of enforcing arc consistency?

Remember: Delete from the tail!
Enforcing Arc Consistency in a CSP

function AC-3(\text{csp}) \text{ returns} the CSP, possibly with reduced domains
\text{inputs: csp, a binary CSP with variables } \{X_1, X_2, \ldots, X_n\}
\text{local variables: queue, a queue of arcs, initially all the arcs in csp}
\text{while queue is not empty do}
\text{ (} X_i, X_j \text{) } \leftarrow \text{ REMOVE-FIRST(queue)}
\text{if REMOVE-INCONSISTENT-VALUES(} X_i, X_j \text{) then}
\text{ for each } X_k \text{ in Neighbors[} X_i \text{] do}
\text{ add (} X_k, X_i \text{) to queue}

function REMOVE-INCONSISTENT-VALUES(\text{X}_i, \text{X}_j) \text{ returns true iff succeeds}
\text{removed } \leftarrow \text{false}
\text{for each } x \text{ in Domain[} X_i \text{] do}
\text{if no value } y \text{ in Domain[} X_j \text{] allows } (x,y) \text{ to satisfy the constraint } X_i \leftrightarrow X_j
\text{then delete } x \text{ from Domain[} X_i \text{]; } \text{removed } \leftarrow \text{true}
\text{return removed}

- Runtime: \(O(n^2d^3)\), can be reduced to \(O(n^2d^2)\)
- ... but detecting all possible future problems is NP-hard – why?

[Demo: CSP applet (made available by aispace.org) -- n-queens]
Limitations of Arc Consistency

- After enforcing arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)

- Arc consistency still runs inside a backtracking search!
Ordering: Minimum Remaining Values

- Variable Ordering: Minimum remaining values (MRV):
 - Choose the variable with the fewest legal left values in its domain

- Why min rather than max?
- Also called “most constrained variable”
- “Fail-fast” ordering
Value Ordering: Least Constraining Value
- Given a choice of variable, choose the least constraining value
- I.e., the one that rules out the fewest values in the remaining variables
- Note that it may take some computation to determine this! (E.g., rerunning filtering)

Why least rather than most?

Combining these ordering ideas makes 1000 queens feasible

[Demo: coloring – backtracking + AC + ordering]