What is Search For?

- Assumptions about the world: a single agent, deterministic actions, fully observed state, discrete state space

- Planning: sequences of actions
 - The path to the goal is the important thing
 - Paths have various costs, depths
 - Heuristics give problem-specific guidance

- Identification: assignments to variables
 - The goal itself is important, not the path
 - All paths at the same depth (for some formulations)
 - CSPs are a specialized class of identification problems
Constraint Satisfaction Problems

- **Standard search problems:**
 - State is a “black box”: arbitrary data structure
 - Goal test can be any function over states
 - Successor function can also be anything

- **Constraint satisfaction problems (CSPs):**
 - A special subset of search problems
 - State is defined by variables X_i with values from a domain D (sometimes D depends on i)
 - Goal test is a set of constraints specifying allowable combinations of values for subsets of variables

- **Simple example of a formal representation language**

- Allows useful general-purpose algorithms with more power than standard search algorithms
Example: Map Coloring

- **Variables:** WA, NT, Q, NSW, V, SA, T
- **Domains:** D = \{red, green, blue\}
- **Constraints:** adjacent regions must have different colors
 - Implicit: WA ≠ NT
 - Explicit: (WA, NT) ∈ \{(red, green), (red, blue), \ldots\}
- **Solutions** are assignments satisfying all constraints, e.g.:
 \{WA=red, NT=green, Q=red, NSW=green, V=red, SA=blue, T=green\}
Example: N-Queens

Formulation 1:
- **Variables:** X_{ij}
- **Domains:** \{0, 1\}
- **Constraints**

\[
\forall i, j, k \quad (X_{ij}, X_{ik}) \in \{(0, 0), (0, 1), (1, 0)\} \\
\forall i, j, k \quad (X_{ij}, X_{kj}) \in \{(0, 0), (0, 1), (1, 0)\} \\
\forall i, j, k \quad (X_{ij}, X_{i+k, j+k}) \in \{(0, 0), (0, 1), (1, 0)\} \\
\forall i, j, k \quad (X_{ij}, X_{i+k, j-k}) \in \{(0, 0), (0, 1), (1, 0)\} \\
\sum_{i,j} X_{ij} = N
\]

Example: N-Queens

Formulation 2:
- **Variables:** Q_k
- **Domains:** \{1, 2, 3, … N\}
- **Constraints:**
 - **Implicit:** $\forall i, j$ non-threatening(Q_i, Q_j)
 - **Explicit:** $(Q_1, Q_2) \in \{(1, 3), (1, 4), \ldots\}$

 • • •
Constraint Graphs

- Binary CSP: each constraint relates (at most) two variables
- Binary constraint graph: nodes are variables, arcs show constraints
- General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!

[Demo: CSP applet (made available by apace.org) -- n-queens]
Example: Cryptarithmetic

- **Variables:**

 $\begin{array}{cccc}
 F & T & U & W & R & O & X_1 & X_2 & X_3 \\
 \end{array}$

- **Domains:**

 \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}

- **Constraints:**

 \begin{align*}
 \text{alldiff}(F, T, U, W, R, O) \\
 O + O &= R + 10 \cdot X_1 \\
 \ldots
 \end{align*}

Example: Sudoku

- **Variables:**

 - Each (open) square

- **Domains:**

 \{1,2,\ldots,9\}

- **Constraints:**

 9-way alldiff for each column

 9-way alldiff for each row

 9-way alldiff for each region

 (or can have a bunch of pairwise inequality constraints)
Example: The Waltz Algorithm

- The Waltz algorithm is for interpreting line drawings of solid polyhedra as 3D objects
- An early example of an AI computation posed as a CSP

Approach:
- Each intersection is a variable
- Adjacent intersections impose constraints on each other
- Solutions are physically realizable 3D interpretations

Varieties of CSPs and Constraints
Varieties of CSPs

- **Discrete Variables**
 - Finite domains
 - Size d means $O(d^n)$ complete assignments
 - E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)
 - Infinite domains (integers, strings, etc.)
 - E.g., job scheduling, variables are start/end times for each job
 - Linear constraints solvable, nonlinear undecidable

- **Continuous variables**
 - E.g., start/end times for Hubble Telescope observations
 - Linear constraints solvable in polynomial time by LP methods (see cs170 for a bit of this theory)

Varieties of Constraints

- **Varieties of Constraints**
 - Unary constraints involve a single variable (equivalent to reducing domains), e.g.:
 - $SA \neq \text{green}$
 - Binary constraints involve pairs of variables, e.g.:
 - $SA \neq \text{WA}$
 - Higher-order constraints involve 3 or more variables:
 - E.g., cryptarithmetic column constraints

- **Preferences (soft constraints):**
 - E.g., red is better than green
 - Often representable by a cost for each variable assignment
 - Gives constrained optimization problems
 - (We’ll ignore these until we get to Bayes’ nets)
Real-World CSPs

- Scheduling problems: e.g., when can we all meet?
- Timetabling problems: e.g., which class is offered when and where?
- Assignment problems: e.g., who teaches what class
- Hardware configuration
- Transportation scheduling
- Factory scheduling
- Circuit layout
- Fault diagnosis
- ... lots more!

- Many real-world problems involve real-valued variables...

Solving CSPs
Standard Search Formulation

- Standard search formulation of CSPs
- States defined by the values assigned so far (partial assignments)
 - Initial state: the empty assignment, {}
 - Successor function: assign a value to an unassigned variable
 - Goal test: the current assignment is complete and satisfies all constraints
- We’ll start with the straightforward, naïve approach, then improve it

Search Methods

- What would BFS do?
- What would DFS do?
- What problems does naïve search have?
Backtracking Search

- Backtracking search is the basic uninformed algorithm for solving CSPs

- Idea 1: One variable at a time
 - Variable assignments are commutative, so fix ordering
 - I.e., [WA = red then NT = green] same as [NT = green then WA = red]
 - Only need to consider assignments to a single variable at each step

- Idea 2: Check constraints as you go
 - I.e. consider only values which do not conflict with previous assignments
 - Might have to do some computation to check the constraints
 - “Incremental goal test”

- Depth-first search with these two improvements is called backtracking search (not the best name)

- Can solve n-queens for $n \approx 25$
Backtracking Example

Backtracking Search

function Backtracking-Search(csp) returns solution/failure
return Recursive-Backtracking(\{\}, csp)

function Recursive-Backtracking(assignment, csp) returns soln/failure
if assignment is complete then return assignment
var ← Select-Unassigned-Variable(Variables[csp], assignment, csp)
for each value in Order-Domain-Values(var, assignment, csp) do
 if value is consistent with assignment given Constraints[csp] then
 add {var = value} to assignment
 result ← Recursive-Backtracking(assignment, csp)
 if result ≠ failure then return result
 remove {var = value} from assignment
 return failure

- Backtracking = DFS + variable-ordering + fail-on-violation
- What are the choice points?

[Demo: coloring -- backtracking]
Improving Backtracking

- General-purpose ideas give huge gains in speed

- Ordering:
 - Which variable should be assigned next?
 - In what order should its values be tried?

- Filtering: Can we detect inevitable failure early?

- Structure: Can we exploit the problem structure?

Filtering
Filtering: Forward Checking

- Filtering: Keep track of domains for unassigned variables and cross off bad options
- Forward checking: Cross off values that violate a constraint when added to the existing assignment

Filtering: Constraint Propagation

- Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

- NT and SA cannot both be blue!
- Why didn’t we detect this yet?
- Constraint propagation: reason from constraint to constraint
Consistency of A Single Arc

- An arc \(X \rightarrow Y \) is consistent iff for every \(x \) in the tail there is some \(y \) in the head which could be assigned without violating a constraint.

Forward checking: Enforcing consistency of arcs pointing to each new assignment.

Delete from the tail!

Arc Consistency of an Entire CSP

- A simple form of propagation makes sure all arcs are consistent:

Important: If \(X \) loses a value, neighbors of \(X \) need to be rechecked!
- Arc consistency detects failure earlier than forward checking
- Can be run as a preprocessor or after each assignment
- What’s the downside of enforcing arc consistency?

Remember: Delete from the tail!
Enforcing Arc Consistency in a CSP

```plaintext
function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables {X1, X2, ..., Xn}
local variables: queue, a queue of arcs, initially all the arcs in csp
while queue is not empty do
    (Xi, Xj) ← REMOVE-FIRST(queue)
    if REMOVE-INCONSISTENT-VALUES(Xi, Xj) then
        for each Xi in Neighbors[Xj] do
            add (Xi, Xj) to queue
```

- Runtime: $O(n^2d^4)$, can be reduced to $O(n^2d^2)$
- ... but detecting all possible future problems is NP-hard – why?

[Demo: CSP applet (made available by aispace.org) -- n-queens]

Limitations of Arc Consistency

- After enforcing arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)

- Arc consistency still runs inside a backtracking search!

[Demo: coloring -- forward checking]
[Demo: coloring -- arc consistency]
Variable Ordering: Minimum remaining values (MRV):
- Choose the variable with the fewest legal left values in its domain

- Why min rather than max?
- Also called “most constrained variable”
- “Fail-fast” ordering
Ordering: Least Constraining Value

- **Value Ordering: Least Constraining Value**
 - Given a choice of variable, choose the *least constraining value*
 - I.e., the one that rules out the fewest values in the remaining variables
 - Note that it may take some computation to determine this! (E.g., rerunning filtering)

- **Why least rather than most?**

- **Combining these ordering ideas makes 1000 queens feasible**

[Demo: coloring – backtracking + AC + ordering]