Constraint Satisfaction Problems

What is Search For?

- Assumptions about the world: a single agent, deterministic actions, fully observed state, discrete state space

- Planning: sequences of actions
 - The path to the goal is the important thing
 - Paths have various costs, depths
 - Heuristics give problem-specific guidance

- Identification: assignments to variables
 - The goal itself is important, not the path
 - All paths at the same depth (for some formulations)
 - CSPs are a specialized class of identification problems

Constraint Satisfaction Problems

- Standard search problems:
 - State is a "black box": arbitrary data structure
 - Goal test can be any function over states
 - Successor function can also be anything

- Constraint satisfaction problems (CSPs):
 - A special subset of search problems
 - State is defined by variables X_i with values from a domain D (sometimes D depends on i)
 - Goal test is a set of constraints specifying allowable combinations of values for subsets of variables

- Simple example of a formal representation language

- Allows useful general-purpose algorithms with more power than standard search algorithms
CSP Examples

Example: Map Coloring

- **Variables:** WA, NT, Q, NSW, V, SA, T
- **Domains:** $D = \{\text{red, green, blue}\}$
- **Constraints:** adjacent regions must have different colors
 - Implicit: WA \neq NT
 - Explicit: $(\text{WA, NT}) \in \{(\text{red, green}), (\text{red, blue}), \ldots\}$
- **Solutions are assignments satisfying all constraints, e.g.:**

 $\{\text{WA=red, NT=green, Q=red, NSW=green, V=red, SA=blue, T=green}\}$

Example: N-Queens

- **Formulation 1:**
 - **Variables:** X_{ij}
 - **Domains:** $\{0, 1\}$
 - **Constraints:**

 $\forall i, j, k \ (X_{ij}, X_{ik}) \in \{(0, 0), (0, 1), (1, 0)\}$

 $\forall i, j, k \ (X_{ij}, X_{kj}) \in \{(0, 0), (0, 1), (1, 0)\}$

 $\forall i, j, k \ (X_{ij}, X_{i+k,j+k}) \in \{(0, 0), (0, 1), (1, 0)\}$

 $\forall i, j, k \ (X_{ij}, X_{i+k,j-k}) \in \{(0, 0), (0, 1), (1, 0)\}$

 $\sum_{i,j} X_{ij} = N$

- **Formulation 2:**
 - **Variables:** Q_k
 - **Domains:** $\{1, 2, 3, \ldots N\}$
 - **Constraints:**

 Implicit: $\forall i, j$ non-threatening(Q_i, Q_j)

 Explicit: $(Q_1, Q_2) \in \{(1, 3), (1, 4), \ldots\}$

 \[\ldots\]
Constraint Graphs

- Binary CSP: each constraint relates (at most) two variables
- Binary constraint graph: nodes are variables, arcs show constraints
- General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!

Example: Cryptarithmetic

- Variables: \(F T U W R O X_1 X_2 X_3 \)
- Domains: \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}
- Constraints:
 - \(\text{alldiff}(F, T, U, W, R, O) \)
 - \(O + O = R + 10 \cdot X_1 \)
 - \ldots \)

Example: Sudoku

- Variables: Each (open) square
- Domains: \{1, 2, ..., 9\}
- Constraints:
 - 9-way alldiff for each column
 - 9-way alldiff for each row
 - 9-way alldiff for each region (or can have a bunch of pairwise inequality constraints)
Example: The Waltz Algorithm

- The Waltz algorithm is for interpreting line drawings of solid polyhedra as 3D objects
- An early example of an AI computation posed as a CSP

Approach:
- Each intersection is a variable
- Adjacent intersections impose constraints on each other
- Solutions are physically realizable 3D interpretations

Varieties of CSPs and Constraints

Varieties of CSPs

- Discrete Variables
 - Finite domains
 - Size d means $O(d^n)$ complete assignments
 - E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)
 - Infinite domains (integers, strings, etc.)
 - E.g., job scheduling, variables are start/end times for each job
 - Linear constraints solvable, nonlinear undecidable

- Continuous variables
 - E.g., start/end times for Hubble Telescope observations
 - Linear constraints solvable in polynomial time by LP methods (see cs170 for a bit of this theory)

Varieties of Constraints

- Varieties of Constraints
 - Unary constraints involve a single variable (equivalent to reducing domains), e.g.:
 - $SA \neq \text{green}$
 - Binary constraints involve pairs of variables, e.g.:
 - $SA \neq WA$
 - Higher-order constraints involve 3 or more variables: e.g., cryptarithmetic column constraints

- Preferences (soft constraints):
 - E.g., red is better than green
 - Often representable by a cost for each variable assignment
 - Gives constrained optimization problems
 - (We’ll ignore these until we get to Bayes’ nets)
Real-World CSPs

- Scheduling problems: e.g., when can we all meet?
- Timetabling problems: e.g., which class is offered when and where?
- Assignment problems: e.g., who teaches what class
- Hardware configuration
- Transportation scheduling
- Factory scheduling
- Circuit layout
- Fault diagnosis
- ... lots more!

- Many real-world problems involve real-valued variables...

Solving CSPs

Standard Search Formulation

- Standard search formulation of CSPs
- States defined by the values assigned so far (partial assignments)
 - Initial state: the empty assignment, {}
 - Successor function: assign a value to an unassigned variable
 - Goal test: the current assignment is complete and satisfies all constraints
- We'll start with the straightforward, naïve approach, then improve it

Search Methods

- What would BFS do?
- What would DFS do?
- What problems does naïve search have?

[Demo: coloring – dfs]
Backtracking Search

- Backtracking search is the basic uninformed algorithm for solving CSPs
- Idea 1: One variable at a time
 - Variable assignments are commutative, so fix ordering
 - i.e., \([WA = \text{red} \text{then} NT = \text{green}] \) same as \([NT = \text{green} \text{then} WA = \text{red}] \)
 - Only need to consider assignments to a single variable at each step
- Idea 2: Check constraints as you go
 - i.e. consider only values which do not conflict with previous assignments
 - Might have to do some computation to check the constraints
 - "Incremental goal test"
- Depth-first search with these two improvements is called backtracking search (not the best name)
- Can solve n-queens for \(n \approx 25\)

Backtracking Example

Backtracking Search

- Backtracking = DFS + variable-ordering + fail-on-violation
- What are the choice points?

```
def BACKTRACKING-SEARCH(\(csp\)) returns solution/failure
  return Recursive-Backtracking(\(\emptyset\), \(csp\))
def Recursive-Backtracking(assignment, \(csp\)) returns solution/failure
  if assignment is complete then return assignment
  var = Select-Unassigned-Variable(\(\text{Variables}(csp)\), assignment, \(csp\))
  for each value in \(\text{Domain}(var, assignment, \(csp\))\) do
    if value is consistent with assignment given \(\text{Constraints}(csp)\) then
      add \(\{\text{var} = \text{value}\}\) to assignment
      result = Recursive-Backtracking(assignment, \(csp\))
      if result is failure then return result
      remove \(\{\text{var} = \text{value}\}\) from assignment
      return result
  return failure
```
Improving Backtracking

- General-purpose ideas give huge gains in speed

- Ordering:
 - Which variable should be assigned next?
 - In what order should its values be tried?

- Filtering: Can we detect inevitable failure early?

- Structure: Can we exploit the problem structure?

Filtering

- Filtering: Keep track of domains for unassigned variables and cross off bad options
- Forward checking: Cross off values that violate a constraint when added to the existing assignment

Filtering: Forward Checking

Filtering: Constraint Propagation

- Forward checking propagates information from assigned to unassigned variables, but doesn’t provide early detection for all failures:
 - NT and SA cannot both be blue!
 - Why didn’t we detect this yet?
 - Constraint propagation: reason from constraint to constraint
Consistency of A Single Arc

- An arc $X \rightarrow Y$ is consistent iff for every x in the tail there is some y in the head which could be assigned without violating a constraint.

Forward checking: Enforcing consistency of arcs pointing to each new assignment.

Delete from the tail!

Arc Consistency of an Entire CSP

- A simple form of propagation makes sure all arcs are consistent:

- Important: If X loses a value, neighbors of X need to be rechecked!
- Arc consistency detects failure earlier than forward checking
- Can be run as a preprocessor or after each assignment
- What’s the downside of enforcing arc consistency?

Limitations of Arc Consistency

- After enforcing arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)

Arc consistency still runs inside a backtracking search!

Enforcing Arc Consistency in a CSP

Function $AC(X, \text{csp})$ returns the CSP, possibly with reduced domains.

Input: csp, a binary CSP with variables (X_1, X_2, \ldots, X_n)

Local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
 $(X_i, X_j) \rightarrow \text{REMOVE-FIRST(queue)}$
 if $\text{REMOVE-INCONSISTENT-VALUES}(X_i, X_j)$ then
 for each X_k in $\text{NEIGHBORS}(X_i)$ do
 add (X_k, X_i) to queue

Function $\text{REMOVE-INCONSISTENT-VALUES}(X_i, X_j)$ returns true iff succeeds

for each x in $\text{DOMAIN}(X_j)$ do
 if no value y in $\text{DOMAIN}(X_i)$ allows (x, y) to satisfy the constraint $X_i \rightarrow X_j$
 then delete x from $\text{DOMAIN}(X_i)$; return removed

- Runtime: $O(n^2d^2)$, can be reduced to $O(n^3d^2)$
- ... but detecting all possible future problems is NP-hard – why?

Limitations of Arc Consistency

[Demo: CSP applet (made available by aispace.org) -- n-queens]
Ordering

Ordering: Minimum Remaining Values

- Variable Ordering: Minimum remaining values (MRV):
 - Choose the variable with the fewest legal left values in its domain

- Why min rather than max?
- Also called “most constrained variable”
- “Fail-fast” ordering

Ordering: Least Constraining Value

- Value Ordering: Least Constraining Value
 - Given a choice of variable, choose the least constraining value
 - I.e., the one that rules out the fewest values in the remaining variables
 - Note that it may take some computation to determine this! (E.g., rerunning filtering)

- Why least rather than most?

- Combining these ordering ideas makes 1000 queens feasible

[Demo: coloring – backtracking + AC + ordering]