CS 188: Artificial Intelligence

Constraint Satisfaction Problems

What is Search For?

- Assumptions about the world: a single agent, deterministic actions, fully observed state, discrete state space
- Planning: sequences of actions
- The path to the goal is the important thing
- Paths have various costs, depths
- Heuristics give problem-specific guidance
- Identification: assignments to variables
 - The goal itself is important, not the path
 - All paths at the same depth (for some formulations)
 - CSPs are a specialized class of identification problems

Constraint Satisfaction Problems

Constraint Satisfaction Problems

- Standard search problems:

 State is a "black box": arbitrary data structure
- Goal test can be any function over states
 Successor function can also be anything
- Constraint satisfaction problems (CSPs):
- A special subset of search problems
 State is defined by variables X_i with values from a domain D (sometimes D depends on i)
- Goal test is a set of constraints specifying allowable combinations of values for subsets of variables
- Simple example of a formal representation language
- Allows useful general-purpose algorithms with more power than standard search algorithms

CSP Examples

Example: Map Coloring

Variables: WA, NT, Q, NSW, V, SA, T

Domains: D = {red, green, blue}

Constraints: adjacent regions must have different

Implicit: $WA \neq NT$

Explicit: $(WA, NT) \in \{(red, green), (red, blue), ...\}$

Solutions are assignments satisfying all

 $\{WA=red, NT=green, Q=red, NSW=green, \}$ $V{=}red, \; SA{=}blue, \; T{=}green\}$

Example: N-Queens

• Formulation 1:

■ Variables: X_{ij} ■ Domains: $\{0,1\}$

Constraints

$$\begin{aligned} \forall i,j,k & (X_{ij},X_{ik}) \in \{(0,0),(0,1),(1,0)\} \\ \forall i,j,k & (X_{ij},X_{kj}) \in \{(0,0),(0,1),(1,0)\} \\ \forall i,j,k & (X_{ij},X_{i+k,j+k}) \in \{(0,0),(0,1),(1,0)\} \\ \forall i,j,k & (X_{ij},X_{i+k,j-k}) \in \{(0,0),(0,1),(1,0)\} \end{aligned}$$

$$\sum_{i,j} X_{ij} = N$$

Example: N-Queens

Formulation 2:

lacktriangle Variables: Q_k

■ Domains: $\{1,2,3,\dots N\}$

Constraints:

Implicit: $\forall i, j$ non-threatening (Q_i, Q_j)

Explicit: $(Q_1, Q_2) \in \{(1, 3), (1, 4), \ldots\}$

. . .

Constraint Graphs

Constraint Graphs

- Binary CSP: each constraint relates (at most) two variables
- Binary constraint graph: nodes are variables, arcs show constraints
- General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!

[Demo: CSP applet (made available by aispace.org) -- n-queens]

Example: Cryptarithmetic

Variables:

 $F T U W R O X_1 X_2 X_3$

Domains

 $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Constraints:

 $\mathsf{alldiff}(F,T,U,W,R,O)$

$$O + O = R + 10 \cdot X_1$$

. . .

Example: Sudoku

- Variables:
- Each (open) square
- Domains:
- **1,2,...,9**
- Constraints:

9-way alldiff for each column
9-way alldiff for each row
9-way alldiff for each region
(or can have a bunch of
pairwise inequality
constraints)

Example: The Waltz Algorithm

- The Waltz algorithm is for interpreting line drawings of solid polyhedra as 3D objects
- An early example of an AI computation posed as a CSP

- Each intersection is a variable
- Adjacent intersections impose constraints on each other
- Solutions are physically realizable 3D interpretations

Varieties of CSPs

- Discrete Variables
 - Finite domains
 - Size d means O(dⁿ) complete assignments
 - E.g., Boolean CSPs, including Boolean satisfiability (NPcomplete)
 - Infinite domains (integers, strings, etc.)
 - E.g., job scheduling, variables are start/end times for each job
 - Linear constraints solvable, nonlinear undecidable

- E.g., start/end times for Hubble Telescope observations
- Linear constraints solvable in polynomial time by LP methods (see cs170 for a bit of this theory)

Varieties of Constraints

- Varieties of Constraints

 Unary constraints involve a single variable (equivalent to reducing domains), e.g.:

 $SA \neq green$

- Binary constraints involve pairs of variables, e.g.:
 - $SA \neq WA$
- Higher-order constraints involve 3 or more variables: e.g., cryptarithmetic column constraints
- Preferences (soft constraints):

 - E.g., red is better than green
 Often representable by a cost for each variable assignment
 - Gives constrained optimization problems (We'll ignore these until we get to Bayes' nets)

Real-World CSPs

- Scheduling problems: e.g., when can we all meet?
- Timetabling problems: e.g., which class is offered when and where?
- Assignment problems: e.g., who teaches what class
- Hardware configuration
- Transportation scheduling
- Factory scheduling
- Circuit lavout
- Fault diagnosis
- ... lots more!

Many real-world problems involve real-valued variables...

Solving CSPs

Varieties of CSPs and Constraints

Standard Search Formulation

- Standard search formulation of CSPs
- States defined by the values assigned so far (partial assignments)
 - Initial state: the empty assignment, {}
 - Successor function: assign a value to an unassigned variable
 - Goal test: the current assignment is complete and satisfies all constraints
- We'll start with the straightforward, naïve approach, then improve it

Search Methods

- What would BFS do?
- What would DFS do?

What problems does naïve search have?

[Demo: coloring -- dfs]

Backtracking Search

Backtracking Search

- Backtracking search is the basic uninformed algorithm for solving CSPs
- Idea 1: One variable at a time

 - Variable assignments are commutative, so fix ordering
 I.e., [WA = red then NT = green] same as [NT = green then WA = red]
 - Only need to consider assignments to a single variable at each step
- Idea 2: Check constraints as you go
 - I.e. consider only values which do not conflict with previous assignments
 - Might have to do some computation to check the constraints
 - "Incremental goal test"
- Depth-first search with these two improvements is called backtracking search (not the best name)
- Can solve n-queens for $n \approx 25$

Backtracking Example

Backtracking Search

function Backtracking-Search(csp) returns solution/failure return Recursive-Backtracking({ }, csp) $\mathbf{function} \ \mathbf{Recursive}\text{-} \mathbf{Backtracking} \big(\mathit{assignment}, \mathit{csp} \big) \ \mathbf{returns} \ \mathsf{soln} / \mathsf{failure}$ if assignment is complete then return assignment $var \leftarrow \text{Select-Unassigned-Variables}[csp], assignment, csp) \\ \text{for each } value \text{ in Order-Domain-Values}(var, assignment, csp) \\ \text{do}$ if value is consistent with assignment given Constraints[csp] then
add {var = value} to assignment
result \(- \text{Recursive-Backtracking}(assignment, csp) \) if $result \neq failure$ then return result remove $\{var = value\}$ from assignmentreturn failure

- Backtracking = DFS + variable-ordering + fail-on-violation
- What are the choice points?

[Demo: coloring -- backtracking]

- General-purpose ideas give huge gains in speed
- Ordering:
 - Which variable should be assigned next?
 - In what order should its values be tried?
- Filtering: Can we detect inevitable failure early?
- Structure: Can we exploit the problem structure?

Filtering: Forward Checking

- Filtering: Keep track of domains for unassigned variables and cross off bad options
- Forward checking: Cross off values that violate a constraint when added to the existing assignment

[Demo: coloring -- forward checking]

Filtering: Constraint Propagation

 Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

- NT and SA cannot both be blue!
- Why didn't we detect this yet?
- Constraint propagation: reason from constraint to constraint

Consistency of A Single Arc

An arc X → Y is consistent iff for every x in the tail there is some y in the head which
could be assigned without violating a constraint

Delete from the tail!

• Forward checking: Enforcing consistency of arcs pointing to each new assignment

Arc Consistency of an Entire CSP

• A simple form of propagation makes sure all arcs are consistent:

- Important: If X loses a value, neighbors of X need to be rechecked!
- Arc consistency detects failure earlier than forward checking
- Can be run as a preprocessor or after each assignment
- What's the downside of enforcing arc consistency?

Remember: Delete from the tail!

Enforcing Arc Consistency in a CSP

$$\label{eq:continuous} \begin{split} & \text{function AC-3}(csp) \text{ returns the CSP, possibly with reduced domains} \\ & \text{inputs: } csy, a binary CSP with variables <math>\{X_1, X_2, \dots, X_n\} \\ & \text{local variables: } queue, a queue of arcs, initially all the arcs in csp \\ & \text{while } queue is \text{ not empty do} \\ & (X_i, X_j) - \text{REMOVE-FIRST}(queue) \\ & \text{if REMOVE-INCONSISTENT-VALUES}(X_i, X_j) \text{ then} \\ & \text{for each } X_k \text{ in NEIGHBORS}[X_j] \text{ do} \\ & \text{add } (X_i, X_i) \text{ to } queue \\ & \text{function REMOVE-INCONSISTENT-VALUES}(X_i, X_j) \text{ returns true iff succeeds} \\ & \text{removed-palse} \\ & \text{for each } x_i \text{ in DOMAIN}[X_j] \text{ do} \\ & \text{if no value } y \text{ in DOMAIN}[X_j] \text{ allows } (x,y) \text{ to satisfy the constraint } X_i \rightarrow X_j \\ & \text{then detex } x \text{ fron DOMAIN}[X_j], removed-true \\ & \text{return removed} \\ \end{split}$$

- Runtime: O(n²d³), can be reduced to O(n²d²)
- ... but detecting all possible future problems is NP-hard why?

[Demo: CSP applet (made available by aispace.org) -- n-queens]

Limitations of Arc Consistency

- After enforcing arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)
- Arc consistency still runs inside a backtracking search!

[Demo: coloring -- forward checking] [Demo: coloring -- arc consistency]

Ordering

Ordering: Minimum Remaining Values

- Variable Ordering: Minimum remaining values (MRV):
 - Choose the variable with the fewest legal left values in its domain

- Why min rather than max?
- Also called "most constrained variable"
- "Fail-fast" ordering

Ordering: Least Constraining Value

- Value Ordering: Least Constraining Value
 - Given a choice of variable, choose the least constraining value
 - I.e., the one that rules out the fewest values in the remaining variables
 - Note that it may take some computation to determine this! (E.g., rerunning filtering)
- Why least rather than most?
- Combining these ordering ideas makes 1000 queens feasible

