
CS 188: Artificial Intelligence
Constraint Satisfaction Problems II

Instructors: Dan Klein and Pieter Abbeel

University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Today

� Efficient Solution of CSPs

� Local Search

Reminder: CSPs

� CSPs:
� Variables
� Domains
� Constraints

� Implicit (provide code to compute)
� Explicit (provide a list of the legal tuples)
� Unary / Binary / N-ary

� Goals:
� Here: find any solution
� Also: find all, find best, etc.

Backtracking Search

Improving Backtracking

� General-purpose ideas give huge gains in speed
� … but it’s all still NP-hard

� Filtering: Can we detect inevitable failure early?

� Ordering:
� Which variable should be assigned next? (MRV)
� In what order should its values be tried? (LCV)

� Structure: Can we exploit the problem structure?

Arc Consistency and Beyond

Arc Consistency of an Entire CSP
� A simple form of propagation makes sure all arcs are simultaneously consistent:

� Arc consistency detects failure earlier than forward checking
� Important: If X loses a value, neighbors of X need to be rechecked!
� Must rerun after each assignment!

Remember: Delete
from the tail!

WA SA
NT Q

NSW

V

Limitations of Arc Consistency

� After enforcing arc
consistency:
� Can have one solution left
� Can have multiple solutions left
� Can have no solutions left (and

not know it)

� Arc consistency still runs
inside a backtracking search!

What went
wrong here?

K-Consistency K-Consistency
� Increasing degrees of consistency

� 1-Consistency (Node Consistency): Each single node’s domain has a
value which meets that node’s unary constraints

� 2-Consistency (Arc Consistency): For each pair of nodes, any
consistent assignment to one can be extended to the other

� K-Consistency: For each k nodes, any consistent assignment to k-1
can be extended to the kth node.

� Higher k more expensive to compute

� (You need to know the k=2 case: arc consistency)

Strong K-Consistency

� Strong k-consistency: also k-1, k-2, … 1 consistent

� Claim: strong n-consistency means we can solve without backtracking!

� Why?
� Choose any assignment to any variable
� Choose a new variable
� By 2-consistency, there is a choice consistent with the first
� Choose a new variable
� By 3-consistency, there is a choice consistent with the first 2
� …

� Lots of middle ground between arc consistency and n-consistency! (e.g. k=3, called
path consistency)

Structure

Problem Structure

� Extreme case: independent subproblems
� Example: Tasmania and mainland do not interact

� Independent subproblems are identifiable as
connected components of constraint graph

� Suppose a graph of n variables can be broken into
subproblems of only c variables:
� Worst-case solution cost is O((n/c)(dc)), linear in n
� E.g., n = 80, d = 2, c =20
� 280 = 4 billion years at 10 million nodes/sec
� (4)(220) = 0.4 seconds at 10 million nodes/sec

Tree-Structured CSPs

� Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d2) time
� Compare to general CSPs, where worst-case time is O(dn)

� This property also applies to probabilistic reasoning (later): an example of the relation
between syntactic restrictions and the complexity of reasoning

Tree-Structured CSPs
� Algorithm for tree-structured CSPs:
� Order: Choose a root variable, order variables so that parents precede children

� Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)
� Assign forward: For i = 1 : n, assign Xi consistently with Parent(Xi)

� Runtime: O(n d2) (why?)

Tree-Structured CSPs
� Claim 1: After backward pass, all root-to-leaf arcs are consistent
� Proof: Each X→Y was made consistent at one point and Y’s domain could not have

been reduced thereafter (because Y’s children were processed before Y)

� Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
� Proof: Induction on position

� Why doesn’t this algorithm work with cycles in the constraint graph?

� Note: we’ll see this basic idea again with Bayes’ nets

Improving Structure Nearly Tree-Structured CSPs

� Conditioning: instantiate a variable, prune its neighbors' domains

� Cutset conditioning: instantiate (in all ways) a set of variables such that
the remaining constraint graph is a tree

� Cutset size c gives runtime O((dc) (n-c) d2), very fast for small c

Cutset Conditioning

SA

SA SA SA

Instantiate the cutset
(all possible ways)

Compute residual CSP
for each assignment

Solve the residual CSPs
(tree structured)

Choose a cutset

Cutset Quiz

� Find the smallest cutset for the graph below.

Tree Decomposition*
� Idea: create a tree-structured graph of mega-variables
� Each mega-variable encodes part of the original CSP
� Subproblems overlap to ensure consistent solutions

M1 M2 M3 M4

{(WA=r,SA=g,NT=b),
(WA=b,SA=r,NT=g),
…}

{(NT=r,SA=g,Q=b),
(NT=b,SA=g,Q=r),
…}

Agree: (M1,M2) ∈
{((WA=g,SA=g,NT=g), (NT=g,SA=g,Q=g)), …}

A
gree on shared vars

NT

SA

≠
WA

≠ ≠

Q

SA

≠
NT

≠ ≠

A
gree on shared vars

NS
W

SA

≠
Q

≠ ≠

A
gree on shared vars

V

SA

≠NS
W

≠ ≠

Iterative Improvement

Iterative Algorithms for CSPs
� Local search methods typically work with “complete” states, i.e., all variables assigned

� To apply to CSPs:
� Take an assignment with unsatisfied constraints
� Operators reassign variable values
� No fringe! Live on the edge.

� Algorithm: While not solved,
� Variable selection: randomly select any conflicted variable
� Value selection: min-conflicts heuristic:

� Choose a value that violates the fewest constraints
� I.e., hill climb with h(n) = total number of violated constraints

Example: 4-Queens

� States: 4 queens in 4 columns (44 = 256 states)
� Operators: move queen in column
� Goal test: no attacks
� Evaluation: c(n) = number of attacks

[Demo: n-queens – iterative improvement (L5D1)]
[Demo: coloring – iterative improvement]

Video of Demo Iterative Improvement – n Queens Video of Demo Iterative Improvement – Coloring

Performance of Min-Conflicts
� Given random initial state, can solve n-queens in almost constant time for arbitrary

n with high probability (e.g., n = 10,000,000)!

� The same appears to be true for any randomly-generated CSP except in a narrow
range of the ratio

Summary: CSPs

� CSPs are a special kind of search problem:
� States are partial assignments
� Goal test defined by constraints

� Basic solution: backtracking search

� Speed-ups:
� Ordering
� Filtering
� Structure

� Iterative min-conflicts is often effective in practice

Local Search Local Search

� Tree search keeps unexplored alternatives on the fringe (ensures completeness)

� Local search: improve a single option until you can’t make it better (no fringe!)

� New successor function: local changes

� Generally much faster and more memory efficient (but incomplete and suboptimal)

Hill Climbing

� Simple, general idea:
� Start wherever
� Repeat: move to the best neighboring state
� If no neighbors better than current, quit

� What’s bad about this approach?
� Complete?
� Optimal?

� What’s good about it?

Hill Climbing Diagram

Hill Climbing Quiz

Starting from X, where do you end up ?

Starting from Y, where do you end up ?

Starting from Z, where do you end up ?

Simulated Annealing
� Idea: Escape local maxima by allowing downhill moves

� But make them rarer as time goes on

34

Simulated Annealing

� Theoretical guarantee:
� Stationary distribution:
� If T decreased slowly enough,

will converge to optimal state!

� Is this an interesting guarantee?

� Sounds like magic, but reality is reality:
� The more downhill steps you need to escape a local

optimum, the less likely you are to ever make them all in a
row

� People think hard about ridge operators which let you
jump around the space in better ways

Genetic Algorithms

� Genetic algorithms use a natural selection metaphor
� Keep best N hypotheses at each step (selection) based on a fitness function
� Also have pairwise crossover operators, with optional mutation to give variety

� Possibly the most misunderstood, misapplied (and even maligned) technique around

Example: N-Queens

� Why does crossover make sense here?
� When wouldn’t it make sense?
� What would mutation be?
� What would a good fitness function be?

Next Time: Adversarial Search!

