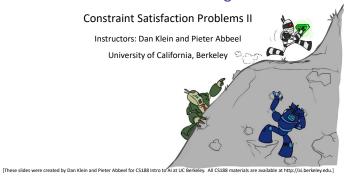
# CS 188: Artificial Intelligence



#### Today

- Efficient Solution of CSPs
- Local Search



#### Reminder: CSPs

- CSPs:
  - Variables
  - Domains Constraints
    - Implicit (provide code to compute)
    - Explicit (provide a list of the legal tuples)
    - Unary / Binary / N-ary
- Goals:
  - Here: find any solution
  - Also: find all, find best, etc.





## **Backtracking Search**

 $\begin{array}{ll} \textbf{function Backtracking-Search}(csp) \ \textbf{returns solution/failure} \\ \textbf{return } \ \textbf{Recursive-Backtracking}(\{\,\}, csp) \end{array}$ 

function RECURSIVE-BACKTRACKING(assignment, csp) returns soln/failure if assignment is complete then return assignment  $var \leftarrow \text{SELECT-UNASSIGNED-VARIABLE}(Variables[csp], assignment, csp) \\ \text{for each } value \text{ in Order-Domain-Values}(var, assignment, csp) \\ \text{do}$ eacm vatue in Order-Jomann-ValueS(var, assignment, csp) do if value is consistent with assignment given Constraints[csp] then add {var = value} to assignment result — RECURSIVE-BACKITACKING(assignment, csp) if result ≠ failure then return result remove {var = value} from assignment

return failure

## Improving Backtracking

- General-purpose ideas give huge gains in speed
  - ... but it's all still NP-hard
- Filtering: Can we detect inevitable failure early?
- Ordering:
  - Which variable should be assigned next? (MRV)
  - In what order should its values be tried? (LCV)
- Structure: Can we exploit the problem structure?



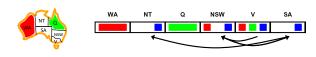


## Arc Consistency and Beyond



## Arc Consistency of an Entire CSP

• A simple form of propagation makes sure all arcs are simultaneously consistent:

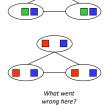


- Arc consistency detects failure earlier than forward checking
- Important: If X loses a value, neighbors of X need to be rechecked!
- Must rerun after each assignment!

Remember: Delete from the tail!

## **Limitations of Arc Consistency**

- After enforcing arc consistency:
  - Can have one solution left
  - Can have multiple solutions left
  - Can have no solutions left (and not know it)
- Arc consistency still runs inside a backtracking search!



#### K-Consistency



## K-Consistency

- Increasing degrees of consistency
  - 1-Consistency (Node Consistency): Each single node's domain has a value which meets that node's unary constraints
  - 2-Consistency (Arc Consistency): For each pair of nodes, any consistent assignment to one can be extended to the other
  - K-Consistency: For each k nodes, any consistent assignment to k-1 can be extended to the k<sup>th</sup> node.
- Higher k more expensive to compute
- (You need to know the k=2 case: arc consistency)





## Strong K-Consistency

- Strong k-consistency: also k-1, k-2, ... 1 consistent
- Claim: strong n-consistency means we can solve without backtracking!
- Why?
  - Choose any assignment to any variable
  - Choose a new variable
  - By 2-consistency, there is a choice consistent with the first
  - Choose a new variable
  - By 3-consistency, there is a choice consistent with the first 2
  - •
- Lots of middle ground between arc consistency and n-consistency! (e.g. k=3, called path consistency)

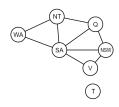
#### Structure



#### **Problem Structure**

- Extreme case: independent subproblems
  - Example: Tasmania and mainland do not interact
- Independent subproblems are identifiable as connected components of constraint graph
- Suppose a graph of n variables can be broken into
- subproblems of only c variables:

  Worst-case solution cost is O((n/c)(dc)), linear in n
- E.g., n = 80, d = 2, c = 20
   2<sup>80</sup> = 4 billion years at 10 million nodes/sec
- (4)(2<sup>20</sup>) = 0.4 seconds at 10 million nodes/sec



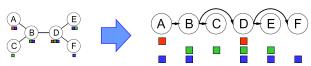
#### Tree-Structured CSPs



- Theorem: if the constraint graph has no loops, the CSP can be solved in  $O(n \ d^2)$  time
- Compare to general CSPs, where worst-case time is O(d<sup>n</sup>)
- This property also applies to probabilistic reasoning (later): an example of the relation between syntactic restrictions and the complexity of reasoning

#### Tree-Structured CSPs

- Algorithm for tree-structured CSPs:
  - Order: Choose a root variable, order variables so that parents precede children



- Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(X<sub>i</sub>),X<sub>i</sub>)
- Assign forward: For i = 1: n, assign X<sub>i</sub> consistently with Parent(X<sub>i</sub>)
- Runtime: O(n d²) (why?)



#### Tree-Structured CSPs

- Claim 1: After backward pass, all root-to-leaf arcs are consistent
- Proof: Each X→Y was made consistent at one point and Y's domain could not have been reduced thereafter (because Y's children were processed before Y)

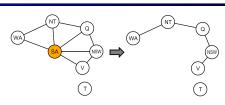


- Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
- Proof: Induction on position
- Why doesn't this algorithm work with cycles in the constraint graph?
- Note: we'll see this basic idea again with Bayes' nets

## **Improving Structure**



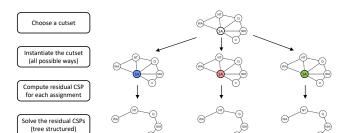
# **Nearly Tree-Structured CSPs**



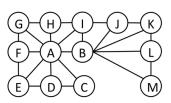
- Conditioning: instantiate a variable, prune its neighbors' domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size c gives runtime O( (dc) (n-c) d2), very fast for small c

## **Cutset Conditioning**

#### **Cutset Quiz**

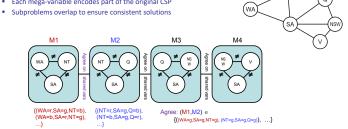


• Find the smallest cutset for the graph below.



## Tree Decomposition\*

- Idea: create a tree-structured graph of mega-variables
- Each mega-variable encodes part of the original CSP

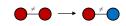


## **Iterative Improvement**



## **Iterative Algorithms for CSPs**

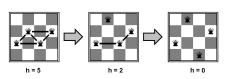
- Local search methods typically work with "complete" states, i.e., all variables assigned
- To apply to CSPs:
  - Take an assignment with unsatisfied constraints
  - Operators reassign variable values
  - No fringe! Live on the edge.



- Algorithm: While not solved,
  - Variable selection: randomly select any conflicted variable
  - Value selection: min-conflicts heuristic:

    - Choose a value that violates the fewest constraints
       I.e., hill climb with h(n) = total number of violated constraints

## Example: 4-Queens



- States: 4 queens in 4 columns (4<sup>4</sup> = 256 states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: c(n) = number of attacks

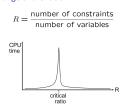
## Video of Demo Iterative Improvement – n Queens

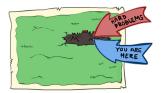
# Video of Demo Iterative Improvement – Coloring



#### Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)!
- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio





# Summary: CSPs

- CSPs are a special kind of search problem:
  - States are partial assignments

Goal test defined by constraints

Basic solution: backtracking search

Speed-ups:

- Speed-ups:Ordering
- Filtering
- Structure

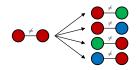
Iterative min-conflicts is often effective in practice

#### **Local Search**



#### **Local Search**

- Tree search keeps unexplored alternatives on the fringe (ensures completeness)
- Local search: improve a single option until you can't make it better (no fringe!)
- New successor function: local changes



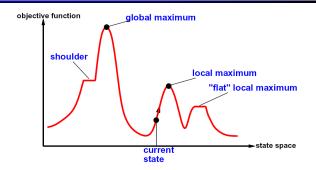
• Generally much faster and more memory efficient (but incomplete and suboptimal)

#### Hill Climbing

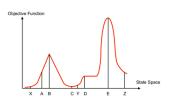
- Simple, general idea:
  - Start wherever
  - Repeat: move to the best neighboring state
  - If no neighbors better than current, quit
- What's bad about this approach?
  - Complete?
  - Optimal?
- What's good about it?



#### Hill Climbing Diagram



## Hill Climbing Quiz



Starting from X, where do you end up?

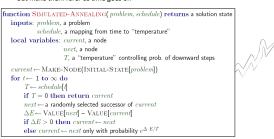
Starting from Y, where do you end up?

Starting from Z, where do you end up?

#### Simulated Annealing

Idea: Escape local maxima by allowing downhill moves

But make them rarer as time goes on



#### Simulated Annealing

#### Theoretical guarantee:

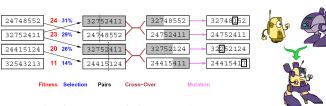
• Stationary distribution:  $p(x) \propto e^{\frac{E(x)}{kT}}$ 

 If T decreased slowly enough, will converge to optimal state!

Is this an interesting guarantee?

- Sounds like magic, but reality is reality:
  - The more downhill steps you need to escape a local optimum, the less likely you are to ever make them all in a
  - People think hard about ridge operators which let you jump around the space in better ways

## **Genetic Algorithms**



- Genetic algorithms use a natural selection metaphor
  - Keep best N hypotheses at each step (selection) based on a fitness function
  - Also have pairwise crossover operators, with optional mutation to give variety
- Possibly the most misunderstood, misapplied (and even maligned) technique around

# Example: N-Queens







- Why does crossover make sense here?
- When wouldn't it make sense?
- What would mutation be?
- What would a good fitness function be?