
Announcements

§ Homework 3: Games
§ Has been released, due Monday 9/17 at 11:59pm

§ Electronic HW3
§ Written HW3
§ Self-assessment HW2

§ Project 2: Games
§ Released, due Friday 9/21 at 4:00pm

§ Homework Policy Update
§ Drop 2 lowest

CS 188: Artificial Intelligence
Uncertainty and Utilities

Instructors: Pieter Abbeel & Dan Klein

University of California, Berkeley
[These slides were created by Dan Klein, Pieter Abbeel for CS188 Intro to AI at UC Berkeley (ai.berkeley.edu).]

Uncertain Outcomes

Worst-Case vs. Average Case

10 10 9 100

max

min

Idea: Uncertain outcomes controlled by chance, not an adversary!

Expectimax Search

§ Why wouldn’t we know what the result of an action will be?
§ Explicit randomness: rolling dice
§ Unpredictable opponents: the ghosts respond randomly
§ Actions can fail: when moving a robot, wheels might slip

§ Values should now reflect average-case (expectimax)
outcomes, not worst-case (minimax) outcomes

§ Expectimax search: compute the average score under
optimal play
§ Max nodes as in minimax search
§ Chance nodes are like min nodes but the outcome is uncertain
§ Calculate their expected utilities
§ I.e. take weighted average (expectation) of children

§ Later, we’ll learn how to formalize the underlying uncertain-
result problems as Markov Decision Processes

10 4 5 7

max

chance

10 10 9 100

[Demo: min vs exp (L7D1,2)]

Video of Demo Minimax vs Expectimax (Min)

Video of Demo Minimax vs Expectimax (Exp)

Expectimax Pseudocode

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is EXP: return exp-value(state)

def exp-value(state):
initialize v = 0
for each successor of state:

p = probability(successor)
v += p * value(successor)

return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, value(successor))
return v

Expectimax Pseudocode

def exp-value(state):
initialize v = 0
for each successor of state:

p = probability(successor)
v += p * value(successor)

return v 5 78 24 -12

1/2
1/3

1/6

v = (1/2) (8) + (1/3) (24) + (1/6) (-12) = 10

Expectimax Example

12 9 6 03 2 154 6

Expectimax Pruning?

12 93 2

Depth-Limited Expectimax

…

…

492 362 …

400 300
Estimate of true

expectimax value
(which would

require a lot of
work to compute)

Probabilities

Reminder: Probabilities

§ A random variable represents an event whose outcome is unknown
§ A probability distribution is an assignment of weights to outcomes

§ Example: Traffic on freeway
§ Random variable: T = whether there’s traffic
§ Outcomes: T in {none, light, heavy}
§ Distribution: P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) = 0.25

§ Some laws of probability (more later):
§ Probabilities are always non-negative
§ Probabilities over all possible outcomes sum to one

§ As we get more evidence, probabilities may change:
§ P(T=heavy) = 0.25, P(T=heavy | Hour=8am) = 0.60
§ We’ll talk about methods for reasoning and updating probabilities later

0.25

0.50

0.25

§ The expected value of a function of a random variable is the
average, weighted by the probability distribution over
outcomes

§ Example: How long to get to the airport?

Reminder: Expectations

0.25 0.50 0.25Probability:

20 min 30 min 60 minTime:
35 minx x x+ +

§ In expectimax search, we have a probabilistic model
of how the opponent (or environment) will behave in
any state
§ Model could be a simple uniform distribution (roll a die)
§ Model could be sophisticated and require a great deal of

computation
§ We have a chance node for any outcome out of our control:

opponent or environment
§ The model might say that adversarial actions are likely!

§ For now, assume each chance node magically comes
along with probabilities that specify the distribution
over its outcomes

What Probabilities to Use?

Having a probabilistic belief about
another agent’s action does not mean

that the agent is flipping any coins!

Quiz: Informed Probabilities

§ Let’s say you know that your opponent is actually running a depth 2 minimax, using the
result 80% of the time, and moving randomly otherwise

§ Question: What tree search should you use?

0.1 0.9

§ Answer: Expectimax!
§ To figure out EACH chance node’s probabilities,

you have to run a simulation of your opponent
§ This kind of thing gets very slow very quickly
§ Even worse if you have to simulate your

opponent simulating you…
§ … except for minimax, which has the nice

property that it all collapses into one game tree

Modeling Assumptions

The Dangers of Optimism and Pessimism

Dangerous Optimism
Assuming chance when the world is adversarial

Dangerous Pessimism
Assuming the worst case when it’s not likely

Assumptions vs. Reality

Adversarial Ghost Random Ghost

Minimax
Pacman

Won 5/5

Avg. Score: 483

Won 5/5

Avg. Score: 493

Expectimax
Pacman

Won 1/5

Avg. Score: -303

Won 5/5

Avg. Score: 503

[Demos: world assumptions (L7D3,4,5,6)]

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble
Ghost used depth 2 search with an eval function that seeks Pacman

Assumptions vs. Reality

Adversarial Ghost Random Ghost

Minimax
Pacman

Won 5/5

Avg. Score: 483

Won 5/5

Avg. Score: 493

Expectimax
Pacman

Won 1/5

Avg. Score: -303

Won 5/5

Avg. Score: 503

[Demos: world assumptions (L7D3,4,5,6)]

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble
Ghost used depth 2 search with an eval function that seeks Pacman

Video of Demo World Assumptions
Random Ghost – Expectimax Pacman

Video of Demo World Assumptions
Adversarial Ghost – Minimax Pacman

Video of Demo World Assumptions
Adversarial Ghost – Expectimax Pacman

Video of Demo World Assumptions
Random Ghost – Minimax Pacman

Other Game Types

Mixed Layer Types

§ E.g. Backgammon
§ Expectiminimax

§ Environment is an
extra “random
agent” player that
moves after each
min/max agent

§ Each node
computes the
appropriate
combination of its
children

Example: Backgammon

§ Dice rolls increase b: 21 possible rolls with 2 dice

§ Backgammon » 20 legal moves

§ Depth 2 = 20 x (21 x 20)3 = 1.2 x 109

§ As depth increases, probability of reaching a given
search node shrinks

§ So usefulness of search is diminished

§ So limiting depth is less damaging

§ But pruning is trickier…

§ Historic AI: TDGammon uses depth-2 search + very
good evaluation function + reinforcement learning:
world-champion level play

§ 1st AI world champion in any game!

Image: Wikipedia

Multi-Agent Utilities

§ What if the game is not zero-sum, or has multiple players?

§ Generalization of minimax:
§ Terminals have utility tuples
§ Node values are also utility tuples
§ Each player maximizes its own component
§ Can give rise to cooperation and

competition dynamically…

1,6,6 7,1,2 6,1,2 7,2,1 5,1,7 1,5,2 7,7,1 5,2,5

Utilities

Maximum Expected Utility

§ Why should we average utilities? Why not minimax?

§ Principle of maximum expected utility:
§ A rational agent should chose the action that maximizes its

expected utility, given its knowledge

§ Questions:
§ Where do utilities come from?
§ How do we know such utilities even exist?
§ How do we know that averaging even makes sense?
§ What if our behavior (preferences) can’t be described by utilities?

What Utilities to Use?

§ For worst-case minimax reasoning, terminal function scale doesn’t matter
§ We just want better states to have higher evaluations (get the ordering right)
§ We call this insensitivity to monotonic transformations

§ For average-case expectimax reasoning, we need magnitudes to be meaningful

0 40 20 30 x2 0 1600 400 900

Utilities

§ Utilities are functions from outcomes
(states of the world) to real numbers
that describe an agent’s preferences

§ Where do utilities come from?
§ In a game, may be simple (+1/-1)
§ Utilities summarize the agent’s goals
§ Theorem: any “rational” preferences can

be summarized as a utility function

§ We hard-wire utilities and let
behaviors emerge
§ Why don’t we let agents pick utilities?
§ Why don’t we prescribe behaviors?

Utilities: Uncertain Outcomes
Getting ice cream

Get Single Get Double

Oops Whew!

Preferences

§ An agent must have preferences among:
§ Prizes: A, B, etc.
§ Lotteries: situations with uncertain prizes

§ Notation:
§ Preference:
§ Indifference:

A B

p 1-p

A LotteryA Prize

A

Rationality

§ We want some constraints on preferences before we call them rational, such as:

§ For example: an agent with intransitive preferences can
be induced to give away all of its money
§ If B > C, then an agent with C would pay (say) 1 cent to get B
§ If A > B, then an agent with B would pay (say) 1 cent to get A
§ If C > A, then an agent with A would pay (say) 1 cent to get C

Rational Preferences

)()()(CACBBA !!! ÞÙAxiom of Transitivity:

Rational Preferences

Theorem: Rational preferences imply behavior describable as maximization of expected utility

The Axioms of Rationality

§ Theorem [Ramsey, 1931; von Neumann & Morgenstern, 1944]

§ Given any preferences satisfying these constraints, there exists a real-valued

function U such that:

§ I.e. values assigned by U preserve preferences of both prizes and lotteries!

§ Maximum expected utility (MEU) principle:

§ Choose the action that maximizes expected utility

§ Note: an agent can be entirely rational (consistent with MEU) without ever representing or

manipulating utilities and probabilities

§ E.g., a lookup table for perfect tic-tac-toe, a reflex vacuum cleaner

MEU Principle

Human Utilities

Utility Scales

§ Normalized utilities: u+ = 1.0, u- = 0.0

§ Micromorts: one-millionth chance of death, useful for
paying to reduce product risks, etc.

§ QALYs: quality-adjusted life years, useful for medical
decisions involving substantial risk

§ Note: behavior is invariant under positive linear
transformation

§ With deterministic prizes only (no lottery choices), only
ordinal utility can be determined, i.e., total order on prizes

§ Utilities map states to real numbers. Which numbers?
§ Standard approach to assessment (elicitation) of human utilities:

§ Compare a prize A to a standard lottery Lp between
§ “best possible prize” u+ with probability p
§ “worst possible catastrophe” u- with probability 1-p

§ Adjust lottery probability p until indifference: A ~ Lp

§ Resulting p is a utility in [0,1]

Human Utilities

0.999999 0.000001

No change

Pay $30

Instant death

Money

§ Money does not behave as a utility function, but we can talk about the
utility of having money (or being in debt)

§ Given a lottery L = [p, $X; (1-p), $Y]

§ The expected monetary value EMV(L) is p*X + (1-p)*Y

§ U(L) = p*U($X) + (1-p)*U($Y)

§ Typically, U(L) < U(EMV(L))

§ In this sense, people are risk-averse

§ When deep in debt, people are risk-prone

Example: Insurance

§ Consider the lottery [0.5, $1000; 0.5, $0]

§ What is its expected monetary value? ($500)

§ What is its certainty equivalent?

§ Monetary value acceptable in lieu of lottery

§ $400 for most people

§ Difference of $100 is the insurance premium

§ There’s an insurance industry because people
will pay to reduce their risk

§ If everyone were risk-neutral, no insurance
needed!

§ It’s win-win: you’d rather have the $400 and

the insurance company would rather have the

lottery (their utility curve is flat and they have

many lotteries)

Example: Human Rationality?

§ Famous example of Allais (1953)
§ A: [0.8, $4k; 0.2, $0]
§ B: [1.0, $3k; 0.0, $0]

§ C: [0.2, $4k; 0.8, $0]
§ D: [0.25, $3k; 0.75, $0]

§ Most people prefer B > A, C > D

§ But if U($0) = 0, then
§ B > A Þ U($3k) > 0.8 U($4k)
§ C > D Þ 0.8 U($4k) > U($3k)

Next Time: MDPs!

